Math.E Field

Microsoft Silverlight will reach end of support after October 2021. Learn more.

Represents the natural logarithmic base, specified by the constant, e.

Namespace:  System
Assembly:  mscorlib (in mscorlib.dll)

Syntax

'Declaration
Public Const E As Double
public const double E

Remarks

The value of this field is 2.7182818284590452354.

Examples

The following example compares E with the value calculated from a power series.

' Example for the Math.E field.

Module Example

   Public Sub Demo(ByVal outputBlock As System.Windows.Controls.TextBlock)
      outputBlock.Text +=  _
          String.Format("This example of Math.E = {0:E16}" & vbCrLf & _
          "generates the following output." & vbCrLf, _
          Math.E) 
      outputBlock.Text += _
          "Define the power series PS(n) = Sum(k->0,n)[1/k!]" + vbCrLf
      outputBlock.Text &= " (limit n->infinity)PS(n) = e" & vbCrLf
      outputBlock.Text += _
          "Display PS(n) and Math.E - PS(n), " & _
          "and stop when delta < 1.0E-15" & vbCrLf + vbCrLf

      CalcPowerSeries(outputBlock)
   End Sub 'Main

   ' Approximate E with a power series.
   Sub CalcPowerSeries(ByVal outputBlock As System.Windows.Controls.TextBlock)
      Dim factorial As Double = 1.0
      Dim PS As Double = 0.0

      ' Stop iterating when the series converges,
      ' and prevent a runaway process.
      Dim n As Integer
      For n = 0 To 999

         ' Calculate a running factorial.
         If n > 0 Then
            factorial *= System.Convert.ToDouble(n)
         End If

         ' Calculate and display the power series.
         PS += 1.0 / factorial
         outputBlock.Text +=  _
             String.Format("PS({0:D2}) = {1:E16},  Math.E - PS({0:D2}) = {2:E16}", _
             n, PS, Math.E - PS) + vbCrLf

         ' Exit when the series converges.
         If Math.Abs(Math.E - PS) < 0.000000000000001 Then
            Exit For
         End If
      Next n
   End Sub 'CalcPowerSeries
End Module 'EField

' This example of Math.E = 2.7182818284590451E+000
' generates the following output.
' 
' Define the power series PS(n) = Sum(k->0,n)[1/k!]
'  (limit n->infinity)PS(n) = e
' Display PS(n) and Math.E - PS(n), and stop when delta < 1.0E-15
' 
' PS(00) = 1.0000000000000000E+000,  Math.E - PS(00) = 1.7182818284590451E+000
' PS(01) = 2.0000000000000000E+000,  Math.E - PS(01) = 7.1828182845904509E-001
' PS(02) = 2.5000000000000000E+000,  Math.E - PS(02) = 2.1828182845904509E-001
' PS(03) = 2.6666666666666665E+000,  Math.E - PS(03) = 5.1615161792378572E-002
' PS(04) = 2.7083333333333330E+000,  Math.E - PS(04) = 9.9484951257120535E-003
' PS(05) = 2.7166666666666663E+000,  Math.E - PS(05) = 1.6151617923787498E-003
' PS(06) = 2.7180555555555554E+000,  Math.E - PS(06) = 2.2627290348964380E-004
' PS(07) = 2.7182539682539684E+000,  Math.E - PS(07) = 2.7860205076724043E-005
' PS(08) = 2.7182787698412700E+000,  Math.E - PS(08) = 3.0586177750535626E-006
' PS(09) = 2.7182815255731922E+000,  Math.E - PS(09) = 3.0288585284310443E-007
' PS(10) = 2.7182818011463845E+000,  Math.E - PS(10) = 2.7312660577649694E-008
' PS(11) = 2.7182818261984929E+000,  Math.E - PS(11) = 2.2605521898810821E-009
' PS(12) = 2.7182818282861687E+000,  Math.E - PS(12) = 1.7287637987806193E-010
' PS(13) = 2.7182818284467594E+000,  Math.E - PS(13) = 1.2285727990501982E-011
' PS(14) = 2.7182818284582302E+000,  Math.E - PS(14) = 8.1490370007486490E-013
' PS(15) = 2.7182818284589949E+000,  Math.E - PS(15) = 5.0182080713057076E-014
' PS(16) = 2.7182818284590429E+000,  Math.E - PS(16) = 2.2204460492503131E-015
' PS(17) = 2.7182818284590455E+000,  Math.E - PS(17) = -4.4408920985006262E-016
// Example for the Math.E field.
using System;

class Example
{
   public static void Demo(System.Windows.Controls.TextBlock outputBlock)
   {
      outputBlock.Text += 
          String.Format("This example of Math.E == {0:E16}\n" +
          "generates the following output.\n", Math.E);
      outputBlock.Text += 
          "Define the power series PS(n) = Sum(k->0,n)[1/k!]" + "\n";
      outputBlock.Text += " (limit n->infinity)PS(n) == e" + "\n";
      outputBlock.Text += 
          "Display PS(n) and Math.E - PS(n), " +
          "and stop when delta < 1.0E-15\n" + "\n";

      CalcPowerSeries(outputBlock);
   }

   // Approximate E with a power series.
   static void CalcPowerSeries(System.Windows.Controls.TextBlock outputBlock)
   {
      double factorial = 1.0;
      double PS = 0.0;

      // Stop iterating when the series converges,
      // and prevent a runaway process.
      for (int n = 0; n < 999 && Math.Abs(Math.E - PS) > 1.0E-15; n++)
      {
         // Calculate a running factorial.
         if (n > 0)
            factorial *= (double)n;

         // Calculate and display the power series.
         PS += 1.0 / factorial;
         outputBlock.Text += 
             String.Format("PS({0:D2}) == {1:E16},  Math.E - PS({0:D2}) == {2:E16}\n",
             n, PS, Math.E - PS);
      }
   }
}

/*
This example of Math.E == 2.7182818284590451E+000
generates the following output.

Define the power series PS(n) = Sum(k->0,n)[1/k!]
 (limit n->infinity)PS(n) == e
Display PS(n) and Math.E - PS(n), and stop when delta < 1.0E-15

PS(00) == 1.0000000000000000E+000,  Math.E - PS(00) == 1.7182818284590451E+000
PS(01) == 2.0000000000000000E+000,  Math.E - PS(01) == 7.1828182845904509E-001
PS(02) == 2.5000000000000000E+000,  Math.E - PS(02) == 2.1828182845904509E-001
PS(03) == 2.6666666666666665E+000,  Math.E - PS(03) == 5.1615161792378572E-002
PS(04) == 2.7083333333333330E+000,  Math.E - PS(04) == 9.9484951257120535E-003
PS(05) == 2.7166666666666663E+000,  Math.E - PS(05) == 1.6151617923787498E-003
PS(06) == 2.7180555555555554E+000,  Math.E - PS(06) == 2.2627290348964380E-004
PS(07) == 2.7182539682539684E+000,  Math.E - PS(07) == 2.7860205076724043E-005
PS(08) == 2.7182787698412700E+000,  Math.E - PS(08) == 3.0586177750535626E-006
PS(09) == 2.7182815255731922E+000,  Math.E - PS(09) == 3.0288585284310443E-007
PS(10) == 2.7182818011463845E+000,  Math.E - PS(10) == 2.7312660577649694E-008
PS(11) == 2.7182818261984929E+000,  Math.E - PS(11) == 2.2605521898810821E-009
PS(12) == 2.7182818282861687E+000,  Math.E - PS(12) == 1.7287637987806193E-010
PS(13) == 2.7182818284467594E+000,  Math.E - PS(13) == 1.2285727990501982E-011
PS(14) == 2.7182818284582302E+000,  Math.E - PS(14) == 8.1490370007486490E-013
PS(15) == 2.7182818284589949E+000,  Math.E - PS(15) == 5.0182080713057076E-014
PS(16) == 2.7182818284590429E+000,  Math.E - PS(16) == 2.2204460492503131E-015
PS(17) == 2.7182818284590455E+000,  Math.E - PS(17) == -4.4408920985006262E-016
*/

Version Information

Silverlight

Supported in: 5, 4, 3

Silverlight for Windows Phone

Supported in: Windows Phone OS 7.1, Windows Phone OS 7.0

XNA Framework

Supported in: Xbox 360, Windows Phone OS 7.0

Platforms

For a list of the operating systems and browsers that are supported by Silverlight, see Supported Operating Systems and Browsers.

See Also

Reference