Math.Cos Method

Microsoft Silverlight will reach end of support after October 2021. Learn more.

Returns the cosine of the specified angle.

Namespace:  System
Assembly:  mscorlib (in mscorlib.dll)

Syntax

'Declaration
<SecuritySafeCriticalAttribute> _
Public Shared Function Cos ( _
    d As Double _
) As Double
[SecuritySafeCriticalAttribute]
public static double Cos(
    double d
)

Parameters

Return Value

Type: System.Double
The cosine of d. If d is equal to NaN, NegativeInfinity, or PositiveInfinity, this method returns NaN.

Remarks

The angle, d, must be in radians. Multiply by Math.PI/180 to convert degrees to radians.

Acceptable values of d range from approximately -9223372036854775295 to approximately 9223372036854775295. For values outside this range, the Cos method returns d unchanged rather than throwing an exception.

Examples

The following example uses Cos to evaluate certain trigonometric identities for selected angles.

' Example for the trigonometric Math.Sin( Double ) and Math.Cos( Double ) methods.

Module Example

   Public Sub Demo(ByVal outputBlock As System.Windows.Controls.TextBlock)
      outputBlock.Text &= _
          "This example of trigonometric " & _
          "Math.Sin( double ) and Math.Cos( double )" & vbCrLf & _
          "generates the following output." & vbCrLf & vbCrLf
      outputBlock.Text &= _
          "Convert selected values for X to radians " & vbCrLf & _
          "and evaluate these trigonometric identities:" & vbCrLf
      outputBlock.Text &= _
          "   sin^2(X) + cos^2(X) = 1" & vbCrLf & _
          "   sin(2 * X) = 2 * sin(X) * cos(X)" & vbCrLf
      outputBlock.Text &= "   cos(2 * X) = cos^2(X) - sin^2(X)" & vbCrLf

      UseSineCosine(outputBlock, 15.0)
      UseSineCosine(outputBlock, 30.0)
      UseSineCosine(outputBlock, 45.0)

      outputBlock.Text &= _
          vbCrLf & "Convert selected values for X and Y to radians" & _
          vbCrLf & "and evaluate these trigonometric identities:" & vbCrLf
      outputBlock.Text &= "   sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)" & vbCrLf
      outputBlock.Text &= "   cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)" & vbCrLf

      UseTwoAngles(outputBlock, 15.0, 30.0)
      UseTwoAngles(outputBlock, 30.0, 45.0)
   End Sub 'Main

   ' Evaluate trigonometric identities with a given angle.
   Sub UseSineCosine(ByVal outputBlock As System.Windows.Controls.TextBlock, ByVal degrees As Double)

      Dim angle As Double = Math.PI * degrees / 180.0
      Dim sinAngle As Double = Math.Sin(angle)
      Dim cosAngle As Double = Math.Cos(angle)

      ' Evaluate sin^2(X) + cos^2(X) = 1.
      outputBlock.Text &= String.Format( _
          vbCrLf & "                           Math.Sin({0} deg) = {1:E16}" & _
          vbCrLf & "                           Math.Cos({0} deg) = {2:E16}", _
          degrees, Math.Sin(angle), Math.Cos(angle)) & vbCrLf
      outputBlock.Text &= String.Format( _
          "(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 = {1:E16}", _
          degrees, sinAngle * sinAngle + cosAngle * cosAngle) & vbCrLf

      ' Evaluate sin(2 * X) = 2 * sin(X) * cos(X).
      outputBlock.Text &= String.Format( _
          "                           Math.Sin({0} deg) = {1:E16}", _
          2.0 * degrees, Math.Sin(2.0 * angle)) & vbCrLf
      outputBlock.Text &= String.Format( _
          "    2 * Math.Sin({0} deg) * Math.Cos({0} deg) = {1:E16}", _
          degrees, 2.0 * sinAngle * cosAngle) & vbCrLf

      ' Evaluate cos(2 * X) = cos^2(X) - sin^2(X).
      outputBlock.Text &= String.Format( _
          "                           Math.Cos({0} deg) = {1:E16}", _
          2.0 * degrees, Math.Cos(2.0 * angle)) & vbCrLf
      outputBlock.Text &= String.Format( _
          "(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 = {1:E16}", _
          degrees, cosAngle * cosAngle - sinAngle * sinAngle) & vbCrLf

   End Sub 'UseSineCosine

   ' Evaluate trigonometric identities that are functions of two angles.
   Sub UseTwoAngles(ByVal outputBlock As System.Windows.Controls.TextBlock, ByVal degreesX As Double, ByVal degreesY As Double)

      Dim angleX As Double = Math.PI * degreesX / 180.0
      Dim angleY As Double = Math.PI * degreesY / 180.0

      ' Evaluate sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y).
      outputBlock.Text &= String.Format( _
          vbCrLf & "        Math.Sin({0} deg) * Math.Cos({1} deg) +" & _
          vbCrLf & "        Math.Cos({0} deg) * Math.Sin({1} deg) = {2:E16}", _
          degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) + _
          Math.Cos(angleX) * Math.Sin(angleY)) & vbCrLf
      outputBlock.Text &= String.Format( _
          "                           Math.Sin({0} deg) = {1:E16}", _
          degreesX + degreesY, Math.Sin(angleX + angleY)) & vbCrLf

      ' Evaluate cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y).
      outputBlock.Text &= String.Format( _
          "        Math.Cos({0} deg) * Math.Cos({1} deg) -" & vbCrLf & _
          "        Math.Sin({0} deg) * Math.Sin({1} deg) = {2:E16}", _
          degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) - _
          Math.Sin(angleX) * Math.Sin(angleY)) & vbCrLf
      outputBlock.Text &= String.Format( _
          "                           Math.Cos({0} deg) = {1:E16}", _
          degreesX + degreesY, Math.Cos(angleX + angleY)) & vbCrLf

   End Sub 'UseTwoAngles
End Module 'SinCos

' This example of trigonometric Math.Sin( double ) and Math.Cos( double )
' generates the following output.
' 
' Convert selected values for X to radians
' and evaluate these trigonometric identities:
'    sin^2(X) + cos^2(X) = 1
'    sin(2 * X) = 2 * sin(X) * cos(X)
'    cos(2 * X) = cos^2(X) - sin^2(X)
' 
'                            Math.Sin(15 deg) = 2.5881904510252074E-001
'                            Math.Cos(15 deg) = 9.6592582628906831E-001
' (Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 = 1.0000000000000000E+000
'                            Math.Sin(30 deg) = 4.9999999999999994E-001
'     2 * Math.Sin(15 deg) * Math.Cos(15 deg) = 4.9999999999999994E-001
'                            Math.Cos(30 deg) = 8.6602540378443871E-001
' (Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 = 8.6602540378443871E-001
' 
'                            Math.Sin(30 deg) = 4.9999999999999994E-001
'                            Math.Cos(30 deg) = 8.6602540378443871E-001
' (Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 = 1.0000000000000000E+000
'                            Math.Sin(60 deg) = 8.6602540378443860E-001
'     2 * Math.Sin(30 deg) * Math.Cos(30 deg) = 8.6602540378443860E-001
'                            Math.Cos(60 deg) = 5.0000000000000011E-001
' (Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 = 5.0000000000000022E-001
' 
'                            Math.Sin(45 deg) = 7.0710678118654746E-001
'                            Math.Cos(45 deg) = 7.0710678118654757E-001
' (Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 = 1.0000000000000000E+000
'                            Math.Sin(90 deg) = 1.0000000000000000E+000
'     2 * Math.Sin(45 deg) * Math.Cos(45 deg) = 1.0000000000000000E+000
'                            Math.Cos(90 deg) = 6.1230317691118863E-017
' (Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 = 2.2204460492503131E-016
' 
' Convert selected values for X and Y to radians
' and evaluate these trigonometric identities:
'    sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)
'    cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)
' 
'         Math.Sin(15 deg) * Math.Cos(30 deg) +
'         Math.Cos(15 deg) * Math.Sin(30 deg) = 7.0710678118654746E-001
'                            Math.Sin(45 deg) = 7.0710678118654746E-001
'         Math.Cos(15 deg) * Math.Cos(30 deg) -
'         Math.Sin(15 deg) * Math.Sin(30 deg) = 7.0710678118654757E-001
'                            Math.Cos(45 deg) = 7.0710678118654757E-001
' 
'         Math.Sin(30 deg) * Math.Cos(45 deg) +
'         Math.Cos(30 deg) * Math.Sin(45 deg) = 9.6592582628906831E-001
'                            Math.Sin(75 deg) = 9.6592582628906820E-001
'         Math.Cos(30 deg) * Math.Cos(45 deg) -
'         Math.Sin(30 deg) * Math.Sin(45 deg) = 2.5881904510252085E-001
'                            Math.Cos(75 deg) = 2.5881904510252096E-001
// Example for the trigonometric Math.Sin( double ) 
// and Math.Cos( double ) methods.
using System;

class Example
{
   public static void Demo(System.Windows.Controls.TextBlock outputBlock)
   {
      outputBlock.Text +=
          "This example of trigonometric " +
          "Math.Sin( double ) and Math.Cos( double )\n" +
          "generates the following output.\n" + "\n";
      outputBlock.Text +=
          "Convert selected values for X to radians \n" +
          "and evaluate these trigonometric identities:" + "\n";
      outputBlock.Text += "   sin^2(X) + cos^2(X) == 1\n" +
                         "   sin(2 * X) == 2 * sin(X) * cos(X)" + "\n";
      outputBlock.Text += "   cos(2 * X) == cos^2(X) - sin^2(X)" + "\n";

      UseSineCosine(outputBlock, 15.0);
      UseSineCosine(outputBlock, 30.0);
      UseSineCosine(outputBlock, 45.0);

      outputBlock.Text +=
          "\nConvert selected values for X and Y to radians \n" +
          "and evaluate these trigonometric identities:" + "\n";
      outputBlock.Text += "   sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" + "\n";
      outputBlock.Text += "   cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" + "\n";

      UseTwoAngles(outputBlock, 15.0, 30.0);
      UseTwoAngles(outputBlock, 30.0, 45.0);
   }

   // Evaluate trigonometric identities with a given angle.
   static void UseSineCosine(System.Windows.Controls.TextBlock outputBlock, double degrees)
   {
      double angle = Math.PI * degrees / 180.0;
      double sinAngle = Math.Sin(angle);
      double cosAngle = Math.Cos(angle);

      // Evaluate sin^2(X) + cos^2(X) == 1.
      outputBlock.Text += String.Format(
          "\n                           Math.Sin({0} deg) == {1:E16}\n" +
          "                           Math.Cos({0} deg) == {2:E16}",
          degrees, Math.Sin(angle), Math.Cos(angle)) + "\n";
      outputBlock.Text += String.Format(
          "(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 == {1:E16}",
          degrees, sinAngle * sinAngle + cosAngle * cosAngle) + "\n";

      // Evaluate sin(2 * X) == 2 * sin(X) * cos(X).
      outputBlock.Text += String.Format(
          "                           Math.Sin({0} deg) == {1:E16}",
          2.0 * degrees, Math.Sin(2.0 * angle)) + "\n";
      outputBlock.Text += String.Format(
          "    2 * Math.Sin({0} deg) * Math.Cos({0} deg) == {1:E16}",
          degrees, 2.0 * sinAngle * cosAngle) + "\n";

      // Evaluate cos(2 * X) == cos^2(X) - sin^2(X).
      outputBlock.Text += String.Format(
          "                           Math.Cos({0} deg) == {1:E16}",
          2.0 * degrees, Math.Cos(2.0 * angle)) + "\n";
      outputBlock.Text += String.Format(
          "(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 == {1:E16}",
          degrees, cosAngle * cosAngle - sinAngle * sinAngle) + "\n";
   }

   // Evaluate trigonometric identities that are functions of two angles.
   static void UseTwoAngles(System.Windows.Controls.TextBlock outputBlock, double degreesX, double degreesY)
   {
      double angleX = Math.PI * degreesX / 180.0;
      double angleY = Math.PI * degreesY / 180.0;

      // Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y).
      outputBlock.Text += String.Format(
          "\n        Math.Sin({0} deg) * Math.Cos({1} deg) +\n" +
          "        Math.Cos({0} deg) * Math.Sin({1} deg) == {2:E16}",
          degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) +
          Math.Cos(angleX) * Math.Sin(angleY)) + "\n";
      outputBlock.Text += String.Format(
          "                           Math.Sin({0} deg) == {1:E16}",
          degreesX + degreesY, Math.Sin(angleX + angleY)) + "\n";

      // Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y).
      outputBlock.Text += String.Format(
          "        Math.Cos({0} deg) * Math.Cos({1} deg) -\n" +
          "        Math.Sin({0} deg) * Math.Sin({1} deg) == {2:E16}",
          degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) -
          Math.Sin(angleX) * Math.Sin(angleY)) + "\n";
      outputBlock.Text += String.Format(
          "                           Math.Cos({0} deg) == {1:E16}",
          degreesX + degreesY, Math.Cos(angleX + angleY)) + "\n";
   }
}

/*
This example of trigonometric Math.Sin( double ) and Math.Cos( double )
generates the following output.

Convert selected values for X to radians
and evaluate these trigonometric identities:
   sin^2(X) + cos^2(X) == 1
   sin(2 * X) == 2 * sin(X) * cos(X)
   cos(2 * X) == cos^2(X) - sin^2(X)

                           Math.Sin(15 deg) == 2.5881904510252074E-001
                           Math.Cos(15 deg) == 9.6592582628906831E-001
(Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 == 1.0000000000000000E+000
                           Math.Sin(30 deg) == 4.9999999999999994E-001
    2 * Math.Sin(15 deg) * Math.Cos(15 deg) == 4.9999999999999994E-001
                           Math.Cos(30 deg) == 8.6602540378443871E-001
(Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 == 8.6602540378443871E-001

                           Math.Sin(30 deg) == 4.9999999999999994E-001
                           Math.Cos(30 deg) == 8.6602540378443871E-001
(Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 == 1.0000000000000000E+000
                           Math.Sin(60 deg) == 8.6602540378443860E-001
    2 * Math.Sin(30 deg) * Math.Cos(30 deg) == 8.6602540378443860E-001
                           Math.Cos(60 deg) == 5.0000000000000011E-001
(Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 == 5.0000000000000022E-001

                           Math.Sin(45 deg) == 7.0710678118654746E-001
                           Math.Cos(45 deg) == 7.0710678118654757E-001
(Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 == 1.0000000000000000E+000
                           Math.Sin(90 deg) == 1.0000000000000000E+000
    2 * Math.Sin(45 deg) * Math.Cos(45 deg) == 1.0000000000000000E+000
                           Math.Cos(90 deg) == 6.1230317691118863E-017
(Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 == 2.2204460492503131E-016

Convert selected values for X and Y to radians
and evaluate these trigonometric identities:
   sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)
   cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)

        Math.Sin(15 deg) * Math.Cos(30 deg) +
        Math.Cos(15 deg) * Math.Sin(30 deg) == 7.0710678118654746E-001
                           Math.Sin(45 deg) == 7.0710678118654746E-001
        Math.Cos(15 deg) * Math.Cos(30 deg) -
        Math.Sin(15 deg) * Math.Sin(30 deg) == 7.0710678118654757E-001
                           Math.Cos(45 deg) == 7.0710678118654757E-001

        Math.Sin(30 deg) * Math.Cos(45 deg) +
        Math.Cos(30 deg) * Math.Sin(45 deg) == 9.6592582628906831E-001
                           Math.Sin(75 deg) == 9.6592582628906820E-001
        Math.Cos(30 deg) * Math.Cos(45 deg) -
        Math.Sin(30 deg) * Math.Sin(45 deg) == 2.5881904510252085E-001
                           Math.Cos(75 deg) == 2.5881904510252096E-001
*/

Version Information

Silverlight

Supported in: 5, 4, 3

Silverlight for Windows Phone

Supported in: Windows Phone OS 7.1, Windows Phone OS 7.0

XNA Framework

Supported in: Xbox 360, Windows Phone OS 7.0

Platforms

For a list of the operating systems and browsers that are supported by Silverlight, see Supported Operating Systems and Browsers.

See Also

Reference