演练:创建图像处理网络
本文档演示如何创建执行图像处理的异步消息块网络。
此网络根据图像的特性确定对其执行何种操作。 本示例使用数据流模型在网络上路由图像。 在数据流模型中,程序的各个独立组件通过发送消息来互相通信。 当某个组件收到消息时,它可以执行某项操作然后将该操作的结果传递给另一个组件。 相比之下,在控制流模型中,应用程序使用控制结构(例如条件语句和循环等等)控制程序中操作的顺序。
基于数据流的网络创建任务的管道。 管道的每个阶段并发执行整个任务的一部分。 与此类似的是汽车制造的装配线。 每辆汽车通过装配线时,一站组装车架,另一站则安装引擎,以此类推。 通过同时装配多辆汽车,装配线比一次装配整辆车拥有更高的产出。
系统必备
在开始本演练之前,请阅读下列文档:
建议您在开始本演练之前先了解 GDI+ 的基础知识。 有关 GDI+ 的更多信息,请参见 GDI+。
各节内容
本演练包含以下各节:
定义图像处理功能
创建图像处理网络
完整示例
定义图像处理功能
本节介绍图像处理网络用于处理从磁盘读取的图像的支持函数。
GetRGB 和 MakeColor 函数分别提取和组合指定颜色的单个组件。
// Retrieves the red, green, and blue components from the given
// color value.
void GetRGB(DWORD color, BYTE& r, BYTE& g, BYTE& b)
{
r = static_cast<BYTE>((color & 0x00ff0000) >> 16);
g = static_cast<BYTE>((color & 0x0000ff00) >> 8);
b = static_cast<BYTE>((color & 0x000000ff));
}
// Creates a single color value from the provided red, green,
// and blue components.
DWORD MakeColor(BYTE r, BYTE g, BYTE b)
{
return (r<<16) | (g<<8) | (b);
}
ProcessImage 函数调用指定的 std::function 对象,以转换 GDI+ 位图对象中每个像素的颜色值。 ProcessImage函数使用 concurrency::parallel_for 算法处理并行的位图中的每一行。
// Calls the provided function for each pixel in a Bitmap object.
void ProcessImage(Bitmap* bmp, const function<void (DWORD&)>& f)
{
int width = bmp->GetWidth();
int height = bmp->GetHeight();
// Lock the bitmap.
BitmapData bitmapData;
Rect rect(0, 0, bmp->GetWidth(), bmp->GetHeight());
bmp->LockBits(&rect, ImageLockModeWrite, PixelFormat32bppRGB, &bitmapData);
// Get a pointer to the bitmap data.
DWORD* image_bits = (DWORD*)bitmapData.Scan0;
// Call the function for each pixel in the image.
parallel_for (0, height, [&, width](int y)
{
for (int x = 0; x < width; ++x)
{
// Get the current pixel value.
DWORD* curr_pixel = image_bits + (y * width) + x;
// Call the function.
f(*curr_pixel);
}
});
// Unlock the bitmap.
bmp->UnlockBits(&bitmapData);
}
Grayscale、Sepiatone、ColorMask 和 Darken 函数调用 ProcessImage 函数,转换 Bitmap 对象中每个像素的颜色值。 所有这些函数都使用 lambda 表达式,来定义一个像素的颜色转换。
// Converts the given image to grayscale.
Bitmap* Grayscale(Bitmap* bmp)
{
ProcessImage(bmp,
[](DWORD& color) {
BYTE r, g, b;
GetRGB(color, r, g, b);
// Set each color component to the average of
// the original components.
BYTE c = (static_cast<WORD>(r) + g + b) / 3;
color = MakeColor(c, c, c);
}
);
return bmp;
}
// Applies sepia toning to the provided image.
Bitmap* Sepiatone(Bitmap* bmp)
{
ProcessImage(bmp,
[](DWORD& color) {
BYTE r0, g0, b0;
GetRGB(color, r0, g0, b0);
WORD r1 = static_cast<WORD>((r0 * .393) + (g0 *.769) + (b0 * .189));
WORD g1 = static_cast<WORD>((r0 * .349) + (g0 *.686) + (b0 * .168));
WORD b1 = static_cast<WORD>((r0 * .272) + (g0 *.534) + (b0 * .131));
color = MakeColor(min(0xff, r1), min(0xff, g1), min(0xff, b1));
}
);
return bmp;
}
// Applies the given color mask to each pixel in the provided image.
Bitmap* ColorMask(Bitmap* bmp, DWORD mask)
{
ProcessImage(bmp,
[mask](DWORD& color) {
color = color & mask;
}
);
return bmp;
}
// Darkens the provided image by the given amount.
Bitmap* Darken(Bitmap* bmp, unsigned int percent)
{
if (percent > 100)
throw invalid_argument("Darken: percent must less than 100.");
double factor = percent / 100.0;
ProcessImage(bmp,
[factor](DWORD& color) {
BYTE r, g, b;
GetRGB(color, r, g, b);
r = static_cast<BYTE>(factor*r);
g = static_cast<BYTE>(factor*g);
b = static_cast<BYTE>(factor*b);
color = MakeColor(r, g, b);
}
);
return bmp;
}
GetColorDominance 函数也调用 ProcessImage 函数。 但是,此函数使用的而不是更改的每种颜色值, concurrency::combinable 计算的红色、 绿色或蓝色成分是否支配着图像对象。
// Determines which color component (red, green, or blue) is most dominant
// in the given image and returns a corresponding color mask.
DWORD GetColorDominance(Bitmap* bmp)
{
// The ProcessImage function processes the image in parallel.
// The following combinable objects enable the callback function
// to increment the color counts without using a lock.
combinable<unsigned int> reds;
combinable<unsigned int> greens;
combinable<unsigned int> blues;
ProcessImage(bmp,
[&](DWORD& color) {
BYTE r, g, b;
GetRGB(color, r, g, b);
if (r >= g && r >= b)
reds.local()++;
else if (g >= r && g >= b)
greens.local()++;
else
blues.local()++;
}
);
// Determine which color is dominant and return the corresponding
// color mask.
unsigned int r = reds.combine(plus<unsigned int>());
unsigned int g = greens.combine(plus<unsigned int>());
unsigned int b = blues.combine(plus<unsigned int>());
if (r + r >= g + b)
return 0x00ff0000;
else if (g + g >= r + b)
return 0x0000ff00;
else
return 0x000000ff;
}
GetEncoderClsid 函数检索编码器的指定 MIME 类型的类标识符。 应用程序使用该函数检索位图的编码器。
// Retrieves the class identifier for the given MIME type of an encoder.
int GetEncoderClsid(const WCHAR* format, CLSID* pClsid)
{
UINT num = 0; // number of image encoders
UINT size = 0; // size of the image encoder array in bytes
ImageCodecInfo* pImageCodecInfo = nullptr;
GetImageEncodersSize(&num, &size);
if(size == 0)
return -1; // Failure
pImageCodecInfo = (ImageCodecInfo*)(malloc(size));
if(pImageCodecInfo == nullptr)
return -1; // Failure
GetImageEncoders(num, size, pImageCodecInfo);
for(UINT j = 0; j < num; ++j)
{
if( wcscmp(pImageCodecInfo[j].MimeType, format) == 0 )
{
*pClsid = pImageCodecInfo[j].Clsid;
free(pImageCodecInfo);
return j; // Success
}
}
free(pImageCodecInfo);
return -1; // Failure
}
Top
创建图像处理网络
本节介绍如何创建对指定目录中每个 JPEG (.jpg) 图像执行图像处理的异步消息块网络。 此网络会执行以下图像处理操作:
将 Tom 创作的所有图像都转换为灰阶。
对于以红色为主色的任何图像,删除绿色和蓝色组件,然后调暗图像。
对其他所有图像应用棕褐色调。
此网络仅应用符合其中一个条件的第一个图像处理操作。 例如,如果图像由 Tom 创作而且以红色为主色,则只会将该图像转换为灰阶。
网络执行每个图像处理操作后,它会将图像作为位图 (.bmp) 文件保存到磁盘。
以下步骤演示如何创建实现该图像处理网络,并将该网络应用到指定目录中所有 JPEG 图像的函数。
创建图像处理网络
创建接受磁盘上目录名称的函数 ProcessImages。
void ProcessImages(const wstring& directory) { }
在 ProcessImages 函数中,创建 countdown_event 变量。 本演示稍后将会演示 countdown_event 类。
// Holds the number of active image processing operations and // signals to the main thread that processing is complete. countdown_event active(0);
创建将 Bitmap 对象与其原始文件名关联的 std::map 对象。
// Maps Bitmap objects to their original file names. map<Bitmap*, wstring> bitmap_file_names;
添加以下代码以定义图像处理网络的成员。
// // Create the nodes of the network. // // Loads Bitmap objects from disk. transformer<wstring, Bitmap*> load_bitmap( [&](wstring file_name) -> Bitmap* { Bitmap* bmp = new Bitmap(file_name.c_str()); if (bmp != nullptr) bitmap_file_names.insert(make_pair(bmp, file_name)); return bmp; } ); // Holds loaded Bitmap objects. unbounded_buffer<Bitmap*> loaded_bitmaps; // Converts images that are authored by Tom to grayscale. transformer<Bitmap*, Bitmap*> grayscale( [](Bitmap* bmp) { return Grayscale(bmp); }, nullptr, [](Bitmap* bmp) -> bool { if (bmp == nullptr) return false; // Retrieve the artist name from metadata. UINT size = bmp->GetPropertyItemSize(PropertyTagArtist); if (size == 0) // Image does not have the Artist property. return false; PropertyItem* artistProperty = (PropertyItem*) malloc(size); bmp->GetPropertyItem(PropertyTagArtist, size, artistProperty); string artist(reinterpret_cast<char*>(artistProperty->value)); free(artistProperty); return (artist.find("Tom ") == 0); } ); // Removes the green and blue color components from images that have red as // their dominant color. transformer<Bitmap*, Bitmap*> colormask( [](Bitmap* bmp) { return ColorMask(bmp, 0x00ff0000); }, nullptr, [](Bitmap* bmp) -> bool { if (bmp == nullptr) return false; return (GetColorDominance(bmp) == 0x00ff0000); } ); // Darkens the color of the provided Bitmap object. transformer<Bitmap*, Bitmap*> darken([](Bitmap* bmp) { return Darken(bmp, 50); }); // Applies sepia toning to the remaining images. transformer<Bitmap*, Bitmap*> sepiatone( [](Bitmap* bmp) { return Sepiatone(bmp); }, nullptr, [](Bitmap* bmp) -> bool { return bmp != nullptr; } ); // Saves Bitmap objects to disk. transformer<Bitmap*, Bitmap*> save_bitmap([&](Bitmap* bmp) -> Bitmap* { // Replace the file extension with .bmp. wstring file_name = bitmap_file_names[bmp]; file_name.replace(file_name.rfind(L'.') + 1, 3, L"bmp"); // Save the processed image. CLSID bmpClsid; GetEncoderClsid(L"image/bmp", &bmpClsid); bmp->Save(file_name.c_str(), &bmpClsid); return bmp; }); // Deletes Bitmap objects. transformer<Bitmap*, Bitmap*> delete_bitmap([](Bitmap* bmp) -> Bitmap* { delete bmp; return nullptr; }); // Decrements the event counter. call<Bitmap*> decrement([&](Bitmap* _) { active.signal(); });
添加以下代码以连接网络。
// // Connect the network. // load_bitmap.link_target(&loaded_bitmaps); loaded_bitmaps.link_target(&grayscale); loaded_bitmaps.link_target(&colormask); colormask.link_target(&darken); loaded_bitmaps.link_target(&sepiatone); loaded_bitmaps.link_target(&decrement); grayscale.link_target(&save_bitmap); darken.link_target(&save_bitmap); sepiatone.link_target(&save_bitmap); save_bitmap.link_target(&delete_bitmap); delete_bitmap.link_target(&decrement);
添加以下代码以将目录中每个 JPEG 文件的完整路径发送给网络头。
// Traverse all files in the directory. wstring searchPattern = directory; searchPattern.append(L"\\*"); WIN32_FIND_DATA fileFindData; HANDLE hFind = FindFirstFile(searchPattern.c_str(), &fileFindData); if (hFind == INVALID_HANDLE_VALUE) return; do { if (!(fileFindData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) { wstring file = fileFindData.cFileName; // Process only JPEG files. if (file.rfind(L".jpg") == file.length() - 4) { // Form the full path to the file. wstring full_path(directory); full_path.append(L"\\"); full_path.append(file); // Increment the count of work items. active.add_count(); // Send the path name to the network. send(load_bitmap, full_path); } } } while (FindNextFile(hFind, &fileFindData) != 0); FindClose(hFind);
等待 countdown_event 变量到 0。
// Wait for all operations to finish. active.wait();
下表描述了网络中的成员。
成员 |
说明 |
---|---|
load_bitmap |
A concurrency::transformer 对象,它将加载Bitmap磁盘的对象,并添加一个条目,以map图像文件的原始文件名相关联的对象。 |
loaded_bitmaps |
A concurrency::unbounded_buffer 发送已加载的图像的图像处理筛选器的对象。 |
grayscale |
一个 transformer 对象,它将 Tom 创作的图像转换为灰阶。 它使用图像的元数据确定图像作者。 |
colormask |
一个 transformer 对象,它将从以红色为主色的图像中删除绿色和蓝色组件。 |
darken |
一个 transformer 对象,它将调暗以红色为主色的图像。 |
sepiatone |
一个 transformer 对象,它将对不是由 Tom 创作且主色不是红色的图像应用棕褐色调。 |
save_bitmap |
一个 transformer 对象,它将处理过的 image 作为位图保存到磁盘。 save_bitmap 从 map 对象检索原始文件名,并将其文件扩展名更改为 .bmp。 |
delete_bitmap |
一个 transformer 对象,它释放图像的内存。 |
decrement |
A concurrency::call 对象,可以在网络中的终端节点。 它通过递减 countdown_event 对象,向主应用程序传递已处理完一个图像的信号。 |
loaded_bitmaps 消息缓冲区很重要,因为作为 unbounded_buffer 对象,它可将 Bitmap 对象提供给多个接收者。 当目标块接受 Bitmap 对象时,unbounded_buffer 对象不会再将该 Bitmap 对象提供给任何其他目标。 因此,您将对象链接到 unbounded_buffer 对象的顺序很重要。 grayscale、colormask 和 sepiatone 消息块都各使用一个筛选器,以便只接受特定的 Bitmap 对象。 decrement 消息缓冲区是 loaded_bitmaps 消息缓冲区的一个重要目标,因为它接受被其他消息缓冲区拒绝的所有 Bitmap 对象。 需要 unbounded_buffer 对象来按顺序传播消息。 因此,unbounded_buffer 对象会阻止操作,直到有新目标块链接到它,并且如果当前没有目标块接受该消息,它会接受该消息。
如果应用程序需要多个消息块处理该消息,而不仅仅是第一个接受该消息的消息块,则您可以使用其他消息块类型(例如 overwrite_buffer)。 overwrite_buffer 类每次容纳一条消息,但它会将该消息传播到其每个目标。
下图显示图像处理网络:
本示例中的 countdown_event 对象使图像处理网络能在处理完所有图像后通知主应用程序。 countdown_event类使用 concurrency::event 对象计数器值达到零时发出信号。 主应用程序每次将文件名发送到网络时都会递增计数器。 网络的终端节点在处理完每个图像后会递减计数器。 主应用程序遍历指定的目录后,它会等待 countdown_event 对象发送计数器已到 0 的信号。
下面的示例演示 countdown_event 类:
// A synchronization primitive that is signaled when its
// count reaches zero.
class countdown_event
{
public:
countdown_event(unsigned int count = 0)
: _current(static_cast<long>(count))
{
// Set the event if the initial count is zero.
if (_current == 0L)
_event.set();
}
// Decrements the event counter.
void signal() {
if(InterlockedDecrement(&_current) == 0L) {
_event.set();
}
}
// Increments the event counter.
void add_count() {
if(InterlockedIncrement(&_current) == 1L) {
_event.reset();
}
}
// Blocks the current context until the event is set.
void wait() {
_event.wait();
}
private:
// The current count.
volatile long _current;
// The event that is set when the counter reaches zero.
event _event;
// Disable copy constructor.
countdown_event(const countdown_event&);
// Disable assignment.
countdown_event const & operator=(countdown_event const&);
};
Top
完整示例
下面的代码显示完整的示例。 wmain 函数管理 GDI+ 库并调用 ProcessImages 函数,以便处理 Sample Pictures 目录中的 JPEG 文件。
// image-processing-network.cpp
// compile with: /DUNICODE /EHsc image-processing-network.cpp /link gdiplus.lib
#include <windows.h>
#include <gdiplus.h>
#include <iostream>
#include <map>
#include <agents.h>
#include <ppl.h>
using namespace concurrency;
using namespace Gdiplus;
using namespace std;
// Retrieves the red, green, and blue components from the given
// color value.
void GetRGB(DWORD color, BYTE& r, BYTE& g, BYTE& b)
{
r = static_cast<BYTE>((color & 0x00ff0000) >> 16);
g = static_cast<BYTE>((color & 0x0000ff00) >> 8);
b = static_cast<BYTE>((color & 0x000000ff));
}
// Creates a single color value from the provided red, green,
// and blue components.
DWORD MakeColor(BYTE r, BYTE g, BYTE b)
{
return (r<<16) | (g<<8) | (b);
}
// Calls the provided function for each pixel in a Bitmap object.
void ProcessImage(Bitmap* bmp, const function<void (DWORD&)>& f)
{
int width = bmp->GetWidth();
int height = bmp->GetHeight();
// Lock the bitmap.
BitmapData bitmapData;
Rect rect(0, 0, bmp->GetWidth(), bmp->GetHeight());
bmp->LockBits(&rect, ImageLockModeWrite, PixelFormat32bppRGB, &bitmapData);
// Get a pointer to the bitmap data.
DWORD* image_bits = (DWORD*)bitmapData.Scan0;
// Call the function for each pixel in the image.
parallel_for (0, height, [&, width](int y)
{
for (int x = 0; x < width; ++x)
{
// Get the current pixel value.
DWORD* curr_pixel = image_bits + (y * width) + x;
// Call the function.
f(*curr_pixel);
}
});
// Unlock the bitmap.
bmp->UnlockBits(&bitmapData);
}
// Converts the given image to grayscale.
Bitmap* Grayscale(Bitmap* bmp)
{
ProcessImage(bmp,
[](DWORD& color) {
BYTE r, g, b;
GetRGB(color, r, g, b);
// Set each color component to the average of
// the original components.
BYTE c = (static_cast<WORD>(r) + g + b) / 3;
color = MakeColor(c, c, c);
}
);
return bmp;
}
// Applies sepia toning to the provided image.
Bitmap* Sepiatone(Bitmap* bmp)
{
ProcessImage(bmp,
[](DWORD& color) {
BYTE r0, g0, b0;
GetRGB(color, r0, g0, b0);
WORD r1 = static_cast<WORD>((r0 * .393) + (g0 *.769) + (b0 * .189));
WORD g1 = static_cast<WORD>((r0 * .349) + (g0 *.686) + (b0 * .168));
WORD b1 = static_cast<WORD>((r0 * .272) + (g0 *.534) + (b0 * .131));
color = MakeColor(min(0xff, r1), min(0xff, g1), min(0xff, b1));
}
);
return bmp;
}
// Applies the given color mask to each pixel in the provided image.
Bitmap* ColorMask(Bitmap* bmp, DWORD mask)
{
ProcessImage(bmp,
[mask](DWORD& color) {
color = color & mask;
}
);
return bmp;
}
// Darkens the provided image by the given amount.
Bitmap* Darken(Bitmap* bmp, unsigned int percent)
{
if (percent > 100)
throw invalid_argument("Darken: percent must less than 100.");
double factor = percent / 100.0;
ProcessImage(bmp,
[factor](DWORD& color) {
BYTE r, g, b;
GetRGB(color, r, g, b);
r = static_cast<BYTE>(factor*r);
g = static_cast<BYTE>(factor*g);
b = static_cast<BYTE>(factor*b);
color = MakeColor(r, g, b);
}
);
return bmp;
}
// Determines which color component (red, green, or blue) is most dominant
// in the given image and returns a corresponding color mask.
DWORD GetColorDominance(Bitmap* bmp)
{
// The ProcessImage function processes the image in parallel.
// The following combinable objects enable the callback function
// to increment the color counts without using a lock.
combinable<unsigned int> reds;
combinable<unsigned int> greens;
combinable<unsigned int> blues;
ProcessImage(bmp,
[&](DWORD& color) {
BYTE r, g, b;
GetRGB(color, r, g, b);
if (r >= g && r >= b)
reds.local()++;
else if (g >= r && g >= b)
greens.local()++;
else
blues.local()++;
}
);
// Determine which color is dominant and return the corresponding
// color mask.
unsigned int r = reds.combine(plus<unsigned int>());
unsigned int g = greens.combine(plus<unsigned int>());
unsigned int b = blues.combine(plus<unsigned int>());
if (r + r >= g + b)
return 0x00ff0000;
else if (g + g >= r + b)
return 0x0000ff00;
else
return 0x000000ff;
}
// Retrieves the class identifier for the given MIME type of an encoder.
int GetEncoderClsid(const WCHAR* format, CLSID* pClsid)
{
UINT num = 0; // number of image encoders
UINT size = 0; // size of the image encoder array in bytes
ImageCodecInfo* pImageCodecInfo = nullptr;
GetImageEncodersSize(&num, &size);
if(size == 0)
return -1; // Failure
pImageCodecInfo = (ImageCodecInfo*)(malloc(size));
if(pImageCodecInfo == nullptr)
return -1; // Failure
GetImageEncoders(num, size, pImageCodecInfo);
for(UINT j = 0; j < num; ++j)
{
if( wcscmp(pImageCodecInfo[j].MimeType, format) == 0 )
{
*pClsid = pImageCodecInfo[j].Clsid;
free(pImageCodecInfo);
return j; // Success
}
}
free(pImageCodecInfo);
return -1; // Failure
}
// A synchronization primitive that is signaled when its
// count reaches zero.
class countdown_event
{
public:
countdown_event(unsigned int count = 0)
: _current(static_cast<long>(count))
{
// Set the event if the initial count is zero.
if (_current == 0L)
_event.set();
}
// Decrements the event counter.
void signal() {
if(InterlockedDecrement(&_current) == 0L) {
_event.set();
}
}
// Increments the event counter.
void add_count() {
if(InterlockedIncrement(&_current) == 1L) {
_event.reset();
}
}
// Blocks the current context until the event is set.
void wait() {
_event.wait();
}
private:
// The current count.
volatile long _current;
// The event that is set when the counter reaches zero.
event _event;
// Disable copy constructor.
countdown_event(const countdown_event&);
// Disable assignment.
countdown_event const & operator=(countdown_event const&);
};
// Demonstrates how to set up a message network that performs a series of
// image processing operations on each JPEG image in the given directory and
// saves each altered image as a Windows bitmap.
void ProcessImages(const wstring& directory)
{
// Holds the number of active image processing operations and
// signals to the main thread that processing is complete.
countdown_event active(0);
// Maps Bitmap objects to their original file names.
map<Bitmap*, wstring> bitmap_file_names;
//
// Create the nodes of the network.
//
// Loads Bitmap objects from disk.
transformer<wstring, Bitmap*> load_bitmap(
[&](wstring file_name) -> Bitmap* {
Bitmap* bmp = new Bitmap(file_name.c_str());
if (bmp != nullptr)
bitmap_file_names.insert(make_pair(bmp, file_name));
return bmp;
}
);
// Holds loaded Bitmap objects.
unbounded_buffer<Bitmap*> loaded_bitmaps;
// Converts images that are authored by Tom to grayscale.
transformer<Bitmap*, Bitmap*> grayscale(
[](Bitmap* bmp) {
return Grayscale(bmp);
},
nullptr,
[](Bitmap* bmp) -> bool {
if (bmp == nullptr)
return false;
// Retrieve the artist name from metadata.
UINT size = bmp->GetPropertyItemSize(PropertyTagArtist);
if (size == 0)
// Image does not have the Artist property.
return false;
PropertyItem* artistProperty = (PropertyItem*) malloc(size);
bmp->GetPropertyItem(PropertyTagArtist, size, artistProperty);
string artist(reinterpret_cast<char*>(artistProperty->value));
free(artistProperty);
return (artist.find("Tom ") == 0);
}
);
// Removes the green and blue color components from images that have red as
// their dominant color.
transformer<Bitmap*, Bitmap*> colormask(
[](Bitmap* bmp) {
return ColorMask(bmp, 0x00ff0000);
},
nullptr,
[](Bitmap* bmp) -> bool {
if (bmp == nullptr)
return false;
return (GetColorDominance(bmp) == 0x00ff0000);
}
);
// Darkens the color of the provided Bitmap object.
transformer<Bitmap*, Bitmap*> darken([](Bitmap* bmp) {
return Darken(bmp, 50);
});
// Applies sepia toning to the remaining images.
transformer<Bitmap*, Bitmap*> sepiatone(
[](Bitmap* bmp) {
return Sepiatone(bmp);
},
nullptr,
[](Bitmap* bmp) -> bool { return bmp != nullptr; }
);
// Saves Bitmap objects to disk.
transformer<Bitmap*, Bitmap*> save_bitmap([&](Bitmap* bmp) -> Bitmap* {
// Replace the file extension with .bmp.
wstring file_name = bitmap_file_names[bmp];
file_name.replace(file_name.rfind(L'.') + 1, 3, L"bmp");
// Save the processed image.
CLSID bmpClsid;
GetEncoderClsid(L"image/bmp", &bmpClsid);
bmp->Save(file_name.c_str(), &bmpClsid);
return bmp;
});
// Deletes Bitmap objects.
transformer<Bitmap*, Bitmap*> delete_bitmap([](Bitmap* bmp) -> Bitmap* {
delete bmp;
return nullptr;
});
// Decrements the event counter.
call<Bitmap*> decrement([&](Bitmap* _) {
active.signal();
});
//
// Connect the network.
//
load_bitmap.link_target(&loaded_bitmaps);
loaded_bitmaps.link_target(&grayscale);
loaded_bitmaps.link_target(&colormask);
colormask.link_target(&darken);
loaded_bitmaps.link_target(&sepiatone);
loaded_bitmaps.link_target(&decrement);
grayscale.link_target(&save_bitmap);
darken.link_target(&save_bitmap);
sepiatone.link_target(&save_bitmap);
save_bitmap.link_target(&delete_bitmap);
delete_bitmap.link_target(&decrement);
// Traverse all files in the directory.
wstring searchPattern = directory;
searchPattern.append(L"\\*");
WIN32_FIND_DATA fileFindData;
HANDLE hFind = FindFirstFile(searchPattern.c_str(), &fileFindData);
if (hFind == INVALID_HANDLE_VALUE)
return;
do
{
if (!(fileFindData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))
{
wstring file = fileFindData.cFileName;
// Process only JPEG files.
if (file.rfind(L".jpg") == file.length() - 4)
{
// Form the full path to the file.
wstring full_path(directory);
full_path.append(L"\\");
full_path.append(file);
// Increment the count of work items.
active.add_count();
// Send the path name to the network.
send(load_bitmap, full_path);
}
}
}
while (FindNextFile(hFind, &fileFindData) != 0);
FindClose(hFind);
// Wait for all operations to finish.
active.wait();
}
int wmain()
{
GdiplusStartupInput gdiplusStartupInput;
ULONG_PTR gdiplusToken;
// Initialize GDI+.
GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, nullptr);
// Perform image processing.
// TODO: Change this path if necessary.
ProcessImages(L"C:\\Users\\Public\\Pictures\\Sample Pictures");
// Shutdown GDI+.
GdiplusShutdown(gdiplusToken);
}
下图演示示例输出。 各个源图像均位于其对应的已修改图像的上方。
灯塔由 Tom Alphin 创作,因此将其转换为灰阶。 菊花、沙漠、考拉和郁金香以红色为主色,因此删除蓝色和绿色组件并调暗。 绣球、水母 和 企鹅 符合默认的条件,因此转换为棕褐色调。
Top
编译代码
将示例代码复制并将其粘贴在 Visual Studio 项目中,或将它粘贴到一个文件,名为图像的处理-network.cpp ,然后在 Visual Studio 命令提示符窗口中运行以下命令。
cl.exe /DUNICODE /EHsc image-processing-network.cpp /link gdiplus.lib