如何:编写简单的 Parallel.For 循环
此示例演示如何使用 Parallel.For 方法的最简单重载来计算两个矩阵的积。 它还演示如何使用 System.Diagnostics.Stopwatch 类来比较并行循环与非并行循环的性能。
注意 |
---|
本文档使用 lambda 表达式在 TPL 中定义委托。如果您不熟悉 C# 或 Visual Basic 中的 lambda 表达式,请参见 在 PLINQ 和 TPL 中的 Lambda 表达式。 |
示例
' How to: Write a Simple Parallel.For Loop
Imports System.Threading.Tasks
Module MultiplyMatrices
#Region "Sequential_Loop"
Sub MultiplyMatricesSequential(ByVal matA As Double(,), ByVal matB As Double(,), ByVal result As Double(,))
Dim matACols As Integer = matA.GetLength(1)
Dim matBCols As Integer = matB.GetLength(1)
Dim matARows As Integer = matA.GetLength(0)
For i As Integer = 0 To matARows - 1
For j As Integer = 0 To matBCols - 1
For k As Integer = 0 To matACols - 1
result(i, j) += matA(i, k) * matB(k, j)
Next
Next
Next
End Sub
#End Region
#Region "Parallel_Loop"
Private Sub MultiplyMatricesParallel(ByVal matA As Double(,), ByVal matB As Double(,), ByVal result As Double(,))
Dim matACols As Integer = matA.GetLength(1)
Dim matBCols As Integer = matB.GetLength(1)
Dim matARows As Integer = matA.GetLength(0)
' A basic matrix multiplication.
' Parallelize the outer loop to partition the source array by rows.
Parallel.For(0, matARows, Sub(i)
For j As Integer = 0 To matBCols - 1
' Use a temporary to improve parallel performance.
Dim temp As Double = 0
For k As Integer = 0 To matACols - 1
temp += matA(i, k) * matB(k, j)
Next
result(i, j) += temp
Next
End Sub)
End Sub
#End Region
#Region "Main"
Sub Main(ByVal args As String())
' Set up matrices. Use small values to better view
' result matrix. Increase the counts to see greater
' speedup in the parallel loop vs. the sequential loop.
Dim colCount As Integer = 180
Dim rowCount As Integer = 2000
Dim colCount2 As Integer = 270
Dim m1 As Double(,) = InitializeMatrix(rowCount, colCount)
Dim m2 As Double(,) = InitializeMatrix(colCount, colCount2)
Dim result As Double(,) = New Double(rowCount - 1, colCount2 - 1) {}
' First do the sequential version.
Console.WriteLine("Executing sequential loop...")
Dim stopwatch As New Stopwatch()
stopwatch.Start()
MultiplyMatricesSequential(m1, m2, result)
stopwatch.[Stop]()
Console.WriteLine("Sequential loop time in milliseconds: {0}", stopwatch.ElapsedMilliseconds)
' For the skeptics.
OfferToPrint(rowCount, colCount2, result)
' Reset timer and results matrix.
stopwatch.Reset()
result = New Double(rowCount - 1, colCount2 - 1) {}
' Do the parallel loop.
Console.WriteLine("Executing parallel loop...")
stopwatch.Start()
MultiplyMatricesParallel(m1, m2, result)
stopwatch.[Stop]()
Console.WriteLine("Parallel loop time in milliseconds: {0}", stopwatch.ElapsedMilliseconds)
OfferToPrint(rowCount, colCount2, result)
' Keep the console window open in debug mode.
Console.WriteLine("Press any key to exit.")
Console.ReadKey()
End Sub
#End Region
#Region "Helper_Methods"
Function InitializeMatrix(ByVal rows As Integer, ByVal cols As Integer) As Double(,)
Dim matrix As Double(,) = New Double(rows - 1, cols - 1) {}
Dim r As New Random()
For i As Integer = 0 To rows - 1
For j As Integer = 0 To cols - 1
matrix(i, j) = r.[Next](100)
Next
Next
Return matrix
End Function
Sub OfferToPrint(ByVal rowCount As Integer, ByVal colCount As Integer, ByVal matrix As Double(,))
Console.WriteLine("Computation complete. Print results? y/n")
Dim c As Char = Console.ReadKey().KeyChar
If c = "y"c OrElse c = "Y"c Then
Console.WindowWidth = 168
Console.WriteLine()
For x As Integer = 0 To rowCount - 1
Console.WriteLine("ROW {0}: ", x)
For y As Integer = 0 To colCount - 1
Console.Write("{0:#.##} ", matrix(x, y))
Next
Console.WriteLine()
Next
End If
End Sub
#End Region
End Module
namespace MultiplyMatrices
{
using System;
using System.Collections.Generic;
using System.Collections.Concurrent;
using System.Diagnostics;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
class Program
{
#region Sequential_Loop
static void MultiplyMatricesSequential(double[,] matA, double[,] matB,
double[,] result)
{
int matACols = matA.GetLength(1);
int matBCols = matB.GetLength(1);
int matARows = matA.GetLength(0);
for (int i = 0; i < matARows; i++)
{
for (int j = 0; j < matBCols; j++)
{
for (int k = 0; k < matACols; k++)
{
result[i, j] += matA[i, k] * matB[k, j];
}
}
}
}
#endregion
#region Parallel_Loop
static void MultiplyMatricesParallel(double[,] matA, double[,] matB, double[,] result)
{
int matACols = matA.GetLength(1);
int matBCols = matB.GetLength(1);
int matARows = matA.GetLength(0);
// A basic matrix multiplication.
// Parallelize the outer loop to partition the source array by rows.
Parallel.For(0, matARows, i =>
{
for (int j = 0; j < matBCols; j++)
{
// Use a temporary to improve parallel performance.
double temp = 0;
for (int k = 0; k < matACols; k++)
{
temp += matA[i, k] * matB[k, j];
}
result[i, j] = temp;
}
}); // Parallel.For
}
#endregion
#region Main
static void Main(string[] args)
{
// Set up matrices. Use small values to better view
// result matrix. Increase the counts to see greater
// speedup in the parallel loop vs. the sequential loop.
int colCount = 180;
int rowCount = 2000;
int colCount2 = 270;
double[,] m1 = InitializeMatrix(rowCount, colCount);
double[,] m2 = InitializeMatrix(colCount, colCount2);
double[,] result = new double[rowCount, colCount2];
// First do the sequential version.
Console.WriteLine("Executing sequential loop...");
Stopwatch stopwatch = new Stopwatch();
stopwatch.Start();
MultiplyMatricesSequential(m1, m2, result);
stopwatch.Stop();
Console.WriteLine("Sequential loop time in milliseconds: {0}", stopwatch.ElapsedMilliseconds);
// For the skeptics.
OfferToPrint(rowCount, colCount2, result);
// Reset timer and results matrix.
stopwatch.Reset();
result = new double[rowCount, colCount2];
// Do the parallel loop.
Console.WriteLine("Executing parallel loop...");
stopwatch.Start();
MultiplyMatricesParallel(m1, m2, result);
stopwatch.Stop();
Console.WriteLine("Parallel loop time in milliseconds: {0}", stopwatch.ElapsedMilliseconds);
OfferToPrint(rowCount, colCount2, result);
// Keep the console window open in debug mode.
Console.WriteLine("Press any key to exit.");
Console.ReadKey();
}
#endregion
#region Helper_Methods
static double[,] InitializeMatrix(int rows, int cols)
{
double[,] matrix = new double[rows, cols];
Random r = new Random();
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
{
matrix[i, j] = r.Next(100);
}
}
return matrix;
}
private static void OfferToPrint(int rowCount, int colCount, double[,] matrix)
{
Console.WriteLine("Computation complete. Print results? y/n");
char c = Console.ReadKey().KeyChar;
if (c == 'y' || c == 'Y')
{
Console.WindowWidth = 180;
Console.WriteLine();
for (int x = 0; x < rowCount; x++)
{
Console.WriteLine("ROW {0}: ", x);
for (int y = 0; y < colCount; y++)
{
Console.Write("{0:#.##} ", matrix[x, y]);
}
Console.WriteLine();
}
}
}
#endregion
}
}
如果不需要取消或中断迭代或保持任何线程本地状态,则可以使用 For 方法的最基本重载。
在对任何代码(包括循环)进行并行化时,一个重要的目标是利用尽可能多的处理器,而不会过度并行化到并行处理的开销使任何性能优势消耗殆尽的程度。 在此特定示例中,只会对外部循环进行并行化,原因是不会在内部循环中执行太多工作。 少量工作和不良缓存影响的组合可能会导致嵌套并行循环的性能降低。 因此,仅并行化外部循环是在大多数系统上最大程度地发挥并发优势的最佳方式。
委托
For 的此重载的第三个参数是类型为 Action<int>(C# 中)或 Action(Of Integer)(Visual Basic 中)的委托。 不管 Action 委托具有零个、一个还是十六个类型参数,它都始终返回 void。 在 Visual Basic 中,Action 的行为是用 Sub 定义的。 示例使用 lambda 表达式来创建委托,但您也可以用其他方式创建委托。 有关更多信息,请参见在 PLINQ 和 TPL 中的 Lambda 表达式。
迭代值
委托采用其值为当前迭代的单一输入参数。 此迭代值由运行时提供,并且其起始值为正在当前线程上处理的源的片段(分区)上第一个元素的索引。
如果需要更好地控制并发级别,请使用采用 System.Threading.Tasks.ParallelOptions 输入参数的重载之一,例如:Parallel.For(Int32, Int32, ParallelOptions, Action<Int32, ParallelLoopState>)。
返回值和异常处理
当所有线程均已完成时,For 将返回 System.Threading.Tasks.ParallelLoopResult 对象。 当您手动停止或中断循环迭代时,此返回值特别有用,因为 ParallelLoopResult 存储诸如完成运行的最后一个迭代等信息。 如果某个线程上出现一个或多个异常,则将会引发 System.AggregateException。
在此示例的代码中,未使用 For 的返回值。
分析和性能
可以使用性能向导来查看您的计算机上的 CPU 使用情况。 经验是:增加矩阵中的列数和行数。 矩阵越大,并行计算和顺序计算之间的性能差异就越大。 当矩阵很小时,由于设置并行循环时会产生开销,因此顺序计算将运行更快。
同步调用共享资源(如控制台或文件系统)将大幅降低并行循环的性能。 在衡量性能时,请尝试避免在循环内进行诸如 Console.WriteLine 等调用。
编译代码
- 将此代码剪切并粘贴到 Visual Studio 2010 项目中。