你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn。
series_outliers()
Applies to: ✅ Microsoft Fabric ✅ Azure Data Explorer ✅ Azure Monitor ✅ Microsoft Sentinel
Scores anomaly points in a series.
The function takes an expression with a dynamic numerical array as input, and generates a dynamic numeric array of the same length. Each value of the array indicates a score of a possible anomaly, using "Tukey's test". A value greater than 1.5 in the same element of the input indicates a rise anomaly. A value less than -1.5 indicates a decline anomaly.
Syntax
series_outliers(
series [,
kind ] [,
ignore_val ] [,
min_percentile ] [,
max_percentile ])
Learn more about syntax conventions.
Parameters
Name | Type | Required | Description |
---|---|---|---|
series | dynamic |
✔️ | An array of numeric values. |
kind | string |
The algorithm to use for outlier detection. The supported options are "tukey" , which is traditional "Tukey", and "ctukey" , which is custom "Tukey". The default is "ctukey" . |
|
ignore_val | int, long, or real | A numeric value indicating the missing values in the series. The default is double( null) . The score of nulls and ignore values is set to 0 . |
|
min_percentile | int, long, or real | The minimum percentile to use to calculate the normal inter-quantile range. The default is 10. The value must be in the range [2.0, 98.0] . This parameter is only relevant for the "ctukey" kind. |
|
max_percentile | int, long, or real | The maximum percentile to use to calculate the normal inter-quantile range. The default is 90. The value must be in the range [2.0, 98.0] . This parameter is only relevant for the "ctukey" kind. |
The following table describes differences between "tukey"
and "ctukey"
:
Algorithm | Default quantile range | Supports custom quantile range |
---|---|---|
"tukey" |
25% / 75% | No |
"ctukey" |
10% / 90% | Yes |
Tip
The best way to use this function is to apply it to the results of the make-series operator.
Example
range x from 0 to 364 step 1
| extend t = datetime(2023-01-01) + 1d*x
| extend y = rand() * 10
| extend y = iff(monthofyear(t) != monthofyear(prev(t)), y+20, y) // generate a sample series with outliers at first day of each month
| summarize t = make_list(t), series = make_list(y)
| extend outliers=series_outliers(series)
| extend pos_anomalies = array_iff(series_greater_equals(outliers, 1.5), 1, 0)
| render anomalychart with(xcolumn=t, ycolumns=series, anomalycolumns=pos_anomalies)