你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn

适用于 JavaScript 的 Azure DocumentIntelligence (前 FormRecognizer) REST 客户端库 - 版本 1.0.0

从文档中提取内容、布局和结构化数据。

请严重依赖 REST 客户端文档, 使用此库

注意:表单识别器已改名为文档智能。 请查看从 迁移指南。

关键链接:

此版本的客户端库默认为服务 "2024-11-30" 版本。

下表显示了 SDK 版本与服务支持的 API 版本之间的关系:

SDK 版本 支持的 API 服务版本
1.0.0 2024-11-30

请通过已停用的模型的旧服务 API 版本(如 "prebuilt-businessCard""prebuilt-document")依赖较旧的 @azure/ai-form-recognizer 库。 有关详细信息,请参阅 Changelog

下表描述了每个客户端及其支持的 API 版本之间的关系::

服务 API 版本 支持的客户端
2024-11-30 DocumentIntelligenceClient @azure-rest/ai-document-intelligence 版本 1.0.0
2023-07-31 DocumentAnalysisClient 和 DocumentModelAdministrationClient @azure/ai-form-recognizer 版本 ^5.0.0
2022-08-01 DocumentAnalysisClient 和 DocumentModelAdministrationClient @azure/ai-form-recognizer 版本 ^4.0.0

开始

当前支持的环境

  • Node.js 的 LTS 版本

先决条件

安装 @azure-rest/ai-document-intelligence

使用 npm安装适用于 JavaScript 的 Azure DocumentIntelligence(前FormRecognizer)REST 客户端 REST 客户端库:

npm install @azure-rest/ai-document-intelligence

创建和验证 DocumentIntelligenceClient

若要使用 Azure Active Directory (AAD) 令牌凭据,请提供从 @azure/标识 库获取的所需凭据类型的实例。

若要使用 AAD 进行身份验证,必须先 npm 安装 @azure/identity

设置后,可以从 @azure/identity 中选择要使用的 凭据 类型。 例如,可以使用 DefaultAzureCredential 对客户端进行身份验证。

将 AAD 应用程序的客户端 ID、租户 ID 和客户端机密的值设置为环境变量:AZURE_CLIENT_ID、AZURE_TENANT_ID、AZURE_CLIENT_SECRET

使用令牌凭据

import DocumentIntelligence from "@azure-rest/ai-document-intelligence";

const client = DocumentIntelligence(
  process.env["DOCUMENT_INTELLIGENCE_ENDPOINT"],
  new DefaultAzureCredential()
);

使用 API 密钥

import DocumentIntelligence from "@azure-rest/ai-document-intelligence";

const client = DocumentIntelligence(process.env["DOCUMENT_INTELLIGENCE_ENDPOINT"], {
  key: process.env["DOCUMENT_INTELLIGENCE_API_KEY"],
});

文档模型

分析预生成布局(urlSource)

const initialResponse = await client
  .path("/documentModels/{modelId}:analyze", "prebuilt-layout")
  .post({
    contentType: "application/json",
    body: {
      urlSource:
        "https://raw.githubusercontent.com/Azure/azure-sdk-for-js/6704eff082aaaf2d97c1371a28461f512f8d748a/sdk/formrecognizer/ai-form-recognizer/assets/forms/Invoice_1.pdf",
    },
    queryParameters: { locale: "en-IN" },
  });

分析预生成布局 (base64Source)

import fs from "fs";
import path from "path";

const filePath = path.join(ASSET_PATH, "forms", "Invoice_1.pdf");
const base64Source = fs.readFileSync(filePath, { encoding: "base64" });
const initialResponse = await client
  .path("/documentModels/{modelId}:analyze", "prebuilt-layout")
  .post({
    contentType: "application/json",
    body: {
      base64Source,
    },
    queryParameters: { locale: "en-IN" },
  });

继续从初始响应创建轮询器

import {
  getLongRunningPoller,
  AnalyzeResultOperationOutput,
  isUnexpected,
} from "@azure-rest/ai-document-intelligence";

if (isUnexpected(initialResponse)) {
  throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeResultOperationOutput;
console.log(result);
// {
//   status: 'succeeded',
//   createdDateTime: '2023-11-10T13:31:31Z',
//   lastUpdatedDateTime: '2023-11-10T13:31:34Z',
//   analyzeResult: {
//     apiVersion: '2023-10-31-preview',
//     .
//     .
//     .
//     contentFormat: 'text'
//   }
// }

批处理分析

import { parseResultIdFromResponse, isUnexpected } from "@azure-rest/ai-document-intelligence";

// 1. Analyze a batch of documents
const initialResponse = await client
  .path("/documentModels/{modelId}:analyzeBatch", "prebuilt-layout")
  .post({
    contentType: "application/json",
    body: {
      azureBlobSource: {
        containerUrl: batchTrainingFilesContainerUrl(),
      },
      resultContainerUrl: batchTrainingFilesResultContainerUrl(),
      resultPrefix: "result",
    },
  });

if (isUnexpected(initialResponse)) {
  throw initialResponse.body.error;
}
const resultId = parseResultIdFromResponse(initialResponse);
console.log("resultId: ", resultId);

// (Optional) You can poll for the batch analysis result but be aware that a job may take unexpectedly long time, and polling could incur additional costs.
// const poller = getLongRunningPoller(client, initialResponse);
// await poller.pollUntilDone();

// 2. At a later time, you can retrieve the operation result using the resultId
const output = await client
  .path("/documentModels/{modelId}/analyzeResults/{resultId}", "prebuilt-layout", resultId)
  .get();
console.log(output);

Markdown 内容格式

支持使用 Markdown 内容格式以及默认纯 文本输出。 目前,仅支持“预生成布局”。 Markdown 内容格式被视为在聊天或自动化使用方案中使用 LLM 更友好的格式。

服务遵循 GFM 规范(GitHub Flavored Markdown)格式。 此外,还引入了一个新的 contentFormat 属性,其值为“text”或“markdown”以指示结果内容格式。

import DocumentIntelligence from "@azure-rest/ai-document-intelligence";
const client = DocumentIntelligence(process.env["DOCUMENT_INTELLIGENCE_ENDPOINT"], {
  key: process.env["DOCUMENT_INTELLIGENCE_API_KEY"],
});

const initialResponse = await client
  .path("/documentModels/{modelId}:analyze", "prebuilt-layout")
  .post({
    contentType: "application/json",
    body: {
      urlSource:
        "https://raw.githubusercontent.com/Azure/azure-sdk-for-js/6704eff082aaaf2d97c1371a28461f512f8d748a/sdk/formrecognizer/ai-form-recognizer/assets/forms/Invoice_1.pdf",
    },
    queryParameters: { outputContentFormat: "markdown" }, // <-- new query parameter
  });

查询字段

指定此功能标志后,服务将进一步提取通过 queryFields 查询参数指定的字段值,以补充模型定义的任何现有字段作为回退。

await client.path("/documentModels/{modelId}:analyze", "prebuilt-layout").post({
  contentType: "application/json",
  body: { urlSource: "..." },
  queryParameters: {
    features: ["queryFields"],
    queryFields: ["NumberOfGuests", "StoreNumber"],
  }, // <-- new query parameter
});

拆分选项

在旧版 @azure/ai-form-recognizer 库支持的早期 API 版本中,文档拆分和分类操作("/documentClassifiers/{classifierId}:analyze")始终尝试将输入文件拆分为多个文档。

为了启用更广泛的方案集,服务引入了新的“2023-10-31-preview”服务版本的“拆分”查询参数。 支持以下值:

  • split: "auto"

    让服务确定拆分的位置。

  • split: "none"

    整个文件被视为单个文档。 不执行拆分。

  • split: "perPage"

    每页都被视为单独的文档。 每个空页保留为自己的文档。

文档分类器 #Build

import {
  DocumentClassifierBuildOperationDetailsOutput,
  getLongRunningPoller,
  isUnexpected,
} from "@azure-rest/ai-document-intelligence";

const containerSasUrl = (): string =>
  process.env["DOCUMENT_INTELLIGENCE_TRAINING_CONTAINER_SAS_URL"];
const initialResponse = await client.path("/documentClassifiers:build").post({
  body: {
    classifierId: `customClassifier${getRandomNumber()}`,
    description: "Custom classifier description",
    docTypes: {
      foo: {
        azureBlobSource: {
          containerUrl: containerSasUrl(),
        },
      },
      bar: {
        azureBlobSource: {
          containerUrl: containerSasUrl(),
        },
      },
    },
  },
});

if (isUnexpected(initialResponse)) {
  throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const response = (await poller.pollUntilDone())
  .body as DocumentClassifierBuildOperationDetailsOutput;
console.log(response);
//  {
//    operationId: '31466834048_f3ee629e-73fb-48ab-993b-1d55d73ca460',
//    kind: 'documentClassifierBuild',
//    status: 'succeeded',
//    .
//    .
//    result: {
//      classifierId: 'customClassifier10978',
//      createdDateTime: '2023-11-09T12:45:56Z',
//      .
//      .
//      description: 'Custom classifier description'
//    },
//    apiVersion: '2023-10-31-preview'
//  }

从文档分析中获取生成的 PDF 输出

const filePath = path.join(ASSET_PATH, "layout-pageobject.pdf");

const base64Source = await fs.readFile(filePath, { encoding: "base64" });

const initialResponse = await client
  .path("/documentModels/{modelId}:analyze", "prebuilt-read")
  .post({
    contentType: "application/json",
    body: {
      base64Source,
    },
    queryParameters: { output: ["pdf"] },
  });

if (isUnexpected(initialResponse)) {
  throw initialResponse.body.error;
}

const poller = getLongRunningPoller(client, initialResponse);

await poller.pollUntilDone();

const output = await client
  .path(
    "/documentModels/{modelId}/analyzeResults/{resultId}/pdf",
    "prebuilt-read",
    parseResultIdFromResponse(initialResponse)
  )
  .get()
  .asNodeStream(); // output.body would be NodeJS.ReadableStream

if (output.status !== "200" || !output.body) {
  throw new Error("The response was unexpected, expected NodeJS.ReadableStream in the body.");
}

const pdfData = await streamToUint8Array(output.body);
fs.promises.writeFile(`./output.pdf`, pdfData);
// Or you can consume the NodeJS.ReadableStream directly

从文档分析中获取指定图形的生成的裁剪图像

const filePath = path.join(ASSET_PATH, "layout-pageobject.pdf");

const base64Source = fs.readFileSync(filePath, { encoding: "base64" });

const initialResponse = await client
  .path("/documentModels/{modelId}:analyze", "prebuilt-layout")
  .post({
    contentType: "application/json",
    body: {
      base64Source,
    },
    queryParameters: { output: ["figures"] },
  });

if (isUnexpected(initialResponse)) {
  throw initialResponse.body.error;
}

const poller = getLongRunningPoller(client, initialResponse, { ...testPollingOptions });

const result = (await poller.pollUntilDone()).body as AnalyzeResultOperationOutput;
const figures = result.analyzeResult?.figures;
assert.isArray(figures);
assert.isNotEmpty(figures?.[0]);
const figureId = figures?.[0].id || "";
assert.isDefined(figureId);

const output = await client
  .path(
    "/documentModels/{modelId}/analyzeResults/{resultId}/figures/{figureId}",
    "prebuilt-layout",
    parseResultIdFromResponse(initialResponse),
    figureId
  )
  .get()
  .asNodeStream(); // output.body would be NodeJS.ReadableStream

if (output.status !== "200" || !output.body) {
  throw new Error("The response was unexpected, expected NodeJS.ReadableStream in the body.");
}

const imageData = await streamToUint8Array(output.body);
fs.promises.writeFile(`./figures/${figureId}.png`, imageData);
// Or you can consume the NodeJS.ReadableStream directly

获取信息

const response = await client.path("/info").get();
if (isUnexpected(response)) {
  throw response.body.error;
}
console.log(response.body.customDocumentModels.limit);
// 20000

列出文档模型

import { paginate } from "@azure-rest/ai-document-intelligence";
const response = await client.path("/documentModels").get();
if (isUnexpected(response)) {
  throw response.body.error;
}

const modelsInAccount: string[] = [];
for await (const model of paginate(client, response)) {
  console.log(model.modelId);
}

故障 排除

伐木

启用日志记录可能有助于发现有关故障的有用信息。 若要查看 HTTP 请求和响应的日志,请将 AZURE_LOG_LEVEL 环境变量设置为 info。 或者,可以通过在 @azure/logger中调用 setLogLevel 在运行时启用日志记录:

const { setLogLevel } = require("@azure/logger");

setLogLevel("info");

有关如何启用日志的更详细说明,可以查看 @azure/记录器包文档