TextCatalog.TokenizeIntoCharactersAsKeys 方法

定义

TokenizingByCharactersEstimator使用滑动窗口将文本拆分为字符序列来创建标记化。

public static Microsoft.ML.Transforms.Text.TokenizingByCharactersEstimator TokenizeIntoCharactersAsKeys (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string inputColumnName = default, bool useMarkerCharacters = true);
static member TokenizeIntoCharactersAsKeys : Microsoft.ML.TransformsCatalog.TextTransforms * string * string * bool -> Microsoft.ML.Transforms.Text.TokenizingByCharactersEstimator
<Extension()>
Public Function TokenizeIntoCharactersAsKeys (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional useMarkerCharacters As Boolean = true) As TokenizingByCharactersEstimator

参数

catalog
TransformsCatalog.TextTransforms

与文本相关的转换的目录。

outputColumnName
String

由转换 inputColumnName生成的列的名称。 此列的数据类型将是键的可变大小矢量。

inputColumnName
String

要转换的列的名称。 If set to null, the value of the outputColumnName will be used as source. 此估算器对文本数据类型进行操作。

useMarkerCharacters
Boolean

为了能够区分标记,例如出于调试目的,可以选择将标记字符 0x02前面、开头和追加另一个标记字符, 0x03并将其追加到字符的输出向量末尾。

返回

示例

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class TokenizeIntoCharactersAsKeys
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create an empty list as the dataset. The
            // 'TokenizeIntoCharactersAsKeys' does not require training data as
            // the estimator ('TokenizingByCharactersEstimator') created by
            // 'TokenizeIntoCharactersAsKeys' API is not a trainable estimator.
            // The empty list is only needed to pass input schema to the pipeline.
            var emptySamples = new List<TextData>();

            // Convert sample list to an empty IDataView.
            var emptyDataView = mlContext.Data.LoadFromEnumerable(emptySamples);

            // A pipeline for converting text into vector of characters.
            // The 'TokenizeIntoCharactersAsKeys' produces result as key type.
            // 'MapKeyToValue' is need to map keys back to their original values.
            var textPipeline = mlContext.Transforms.Text
                .TokenizeIntoCharactersAsKeys("CharTokens", "Text",
                    useMarkerCharacters: false)
                .Append(mlContext.Transforms.Conversion.MapKeyToValue(
                    "CharTokens"));

            // Fit to data.
            var textTransformer = textPipeline.Fit(emptyDataView);

            // Create the prediction engine to get the character vector from the
            // input text/string.
            var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
                TransformedTextData>(textTransformer);

            // Call the prediction API to convert the text into characters.
            var data = new TextData()
            {
                Text = "ML.NET's " +
                "TokenizeIntoCharactersAsKeys API splits text/string into " +
                "characters."
            };

            var prediction = predictionEngine.Predict(data);

            // Print the length of the character vector.
            Console.WriteLine($"Number of tokens: {prediction.CharTokens.Length}");

            // Print the character vector.
            Console.WriteLine("\nCharacter Tokens: " + string.Join(",", prediction
                .CharTokens));

            //  Expected output:
            //   Number of tokens: 77
            //   Character Tokens: M,L,.,N,E,T,',s,<?>,T,o,k,e,n,i,z,e,I,n,t,o,C,h,a,r,a,c,t,e,r,s,A,s,K,e,y,s,<?>,A,P,I,<?>,
            //                     s,p,l,i,t,s,<?>,t,e,x,t,/,s,t,r,i,n,g,<?>,i,n,t,o,<?>,c,h,a,r,a,c,t,e,r,s,.
            //
            // <?>: is a unicode control character used instead of spaces ('\u2400').
        }

        private class TextData
        {
            public string Text { get; set; }
        }

        private class TransformedTextData : TextData
        {
            public string[] CharTokens { get; set; }
        }
    }
}

适用于