RecommendationCatalog.CrossValidate 方法

定义

通过折叠(如果提供)estimator和尊重samplingKeyColumnNamedata运行交叉验证numberOfFolds。 然后,根据 labelColumnName 每个子模型评估并返回指标。

public System.Collections.Generic.IReadOnlyList<Microsoft.ML.TrainCatalogBase.CrossValidationResult<Microsoft.ML.Data.RegressionMetrics>> CrossValidate (Microsoft.ML.IDataView data, Microsoft.ML.IEstimator<Microsoft.ML.ITransformer> estimator, int numberOfFolds = 5, string labelColumnName = "Label", string samplingKeyColumnName = default, int? seed = default);
member this.CrossValidate : Microsoft.ML.IDataView * Microsoft.ML.IEstimator<Microsoft.ML.ITransformer> * int * string * string * Nullable<int> -> System.Collections.Generic.IReadOnlyList<Microsoft.ML.TrainCatalogBase.CrossValidationResult<Microsoft.ML.Data.RegressionMetrics>>
Public Function CrossValidate (data As IDataView, estimator As IEstimator(Of ITransformer), Optional numberOfFolds As Integer = 5, Optional labelColumnName As String = "Label", Optional samplingKeyColumnName As String = Nothing, Optional seed As Nullable(Of Integer) = Nothing) As IReadOnlyList(Of TrainCatalogBase.CrossValidationResult(Of RegressionMetrics))

参数

data
IDataView

要运行交叉验证的数据。

estimator
IEstimator<ITransformer>

要适应的估算器。

numberOfFolds
Int32

交叉验证折叠数。

labelColumnName
String

用于评估) 的标签列 (。

samplingKeyColumnName
String

用作分层列的列的可选名称。 如果两个示例在提供) 时共享 (的相同值 samplingKeyColumnName ,则保证它们出现在 (训练或测试) 的同一子集中。 使用此方法可确保没有从训练到测试集的标签泄漏。 如果未提供此可选参数,将生成分层列,其值将为随机数。

seed
Nullable<Int32>

与 . 结合使用的 samplingKeyColumnName可选参数。 samplingKeyColumnName如果未提供,则生成的随机数将使用此种子作为值。 如果未提供该值,将使用默认值。

返回

每折叠结果:指标、模型、评分数据集。

适用于