演练:在启用 COM 的应用程序中使用并发运行时
本文档演示如何在使用组件对象模型 (COM) 的应用程序中使用并发运行时。
先决条件
在开始操作本演练之前,请阅读以下文档:
有关 COM 的详细信息,请参阅组件对象模型 (COM)。
管理 COM 库的生存期
尽管将 COM 与并发运行时配合使用需遵循与任何其他并发机制相同的原则,不过以下准则可帮助你有效地一起使用这些库。
线程在使用 COM 库之前必须调用 CoInitializeEx。
只要线程为每个调用提供相同的参数,线程便可以多次调用
CoInitializeEx
。对于每个
CoInitializeEx
调用,线程还必须调用 CoUninitialize。 换句话说,对CoInitializeEx
和CoUninitialize
的调用必须均衡。若要从一个线程单元切换到另一个线程单元,线程必须在使用新线程规范调用
CoInitializeEx
之前完全释放 COM 库。
将 COM 与并发运行时配合使用时,其他 COM 原则适用。 例如,在单线程单元 (STA) 中创建对象并将该对象封送到另一个单元的应用程序还必须提供消息循环来处理传入消息。 另请记住,在单元之间封送对象可能会降低性能。
将 COM 与并行模式库配合使用
将 COM 与并行模式库 (PPL) 中的组件(例如任务组或并行算法)一起使用时,需在每个任务或迭代期间使用 COM 库之前调用 CoInitializeEx
,并在每个任务或迭代完成之前调用 CoUninitialize
。 以下示例演示如何使用 concurrency::structured_task_group 对象管理 COM 库的生存期。
structured_task_group tasks;
// Create and run a task.
auto task = make_task([] {
// Initialize the COM library on the current thread.
CoInitializeEx(NULL, COINIT_MULTITHREADED);
// TODO: Perform task here.
// Free the COM library.
CoUninitialize();
});
tasks.run(task);
// TODO: Run additional tasks here.
// Wait for the tasks to finish.
tasks.wait();
必须确保在取消任务或并行算法时或是任务体引发异常时正确释放 COM 库。 若要保证任务在退出前调用 CoUninitialize
,请使用 try-finally
块或“资源获取即初始化”(RAII) 模式。 以下示例使用 try-finally
块在任务完成或取消时或是引发异常时释放 COM 库。
structured_task_group tasks;
// Create and run a task.
auto task = make_task([] {
bool coinit = false;
__try {
// Initialize the COM library on the current thread.
CoInitializeEx(NULL, COINIT_MULTITHREADED);
coinit = true;
// TODO: Perform task here.
}
__finally {
// Free the COM library.
if (coinit)
CoUninitialize();
}
});
tasks.run(task);
// TODO: Run additional tasks here.
// Wait for the tasks to finish.
tasks.wait();
以下示例使用 RAII 模式定义 CCoInitializer
类,该类在给定范围内管理 COM 库的生存期。
// An exception-safe wrapper class that manages the lifetime
// of the COM library in a given scope.
class CCoInitializer
{
public:
explicit CCoInitializer(DWORD dwCoInit = COINIT_APARTMENTTHREADED)
: _coinitialized(false)
{
// Initialize the COM library on the current thread.
HRESULT hr = CoInitializeEx(NULL, dwCoInit);
if (SUCCEEDED(hr))
_coinitialized = true;
}
~CCoInitializer()
{
// Free the COM library.
if (_coinitialized)
CoUninitialize();
}
private:
// Flags whether COM was properly initialized.
bool _coinitialized;
// Hide copy constructor and assignment operator.
CCoInitializer(const CCoInitializer&);
CCoInitializer& operator=(const CCoInitializer&);
};
当任务退出时,可以使用 CCoInitializer
类自动释放 COM 库,如下所示。
structured_task_group tasks;
// Create and run a task.
auto task = make_task([] {
// Enable COM for the lifetime of the task.
CCoInitializer coinit(COINIT_MULTITHREADED);
// TODO: Perform task here.
// The CCoInitializer object frees the COM library
// when the task exits.
});
tasks.run(task);
// TODO: Run additional tasks here.
// Wait for the tasks to finish.
tasks.wait();
有关并发运行时中的取消的详细信息,请参阅 PPL 中的取消操作。
将 COM 与异步代理配合使用
将 COM 与异步代理配合使用时,请先调用 CoInitializeEx
,然后在 concurrency::agent::run 方法中将 COM 库用于代理。 随后在 run
方法返回之前调用 CoUninitialize
。 请勿在代理的构造函数或析构函数中使用 COM 管理例程,并且请勿替代 concurrency::agent::start 或 concurrency::agent::done 方法,因为这些方法是从与 run
方法不同的线程进行调用。
以下示例演示一个名为 CCoAgent
的基本代理类,用于在 run
方法中管理 COM 库。
class CCoAgent : public agent
{
protected:
void run()
{
// Initialize the COM library on the current thread.
CoInitializeEx(NULL, COINIT_MULTITHREADED);
// TODO: Perform work here.
// Free the COM library.
CoUninitialize();
// Set the agent to the finished state.
done();
}
};
本演练后面部分提供了完整示例。
将 COM 与轻量级任务配合使用
任务计划程序文档介绍了并发运行时中轻量级任务的角色。 可以将 COM 与轻量级任务配合使用,如同在 Windows API 中传递给 CreateThread
函数的任何线程例程一样。 这在下面的示例中显示。
// A basic lightweight task that you schedule directly from a
// Scheduler or ScheduleGroup object.
void ThreadProc(void* data)
{
// Initialize the COM library on the current thread.
CoInitializeEx(NULL, COINIT_MULTITHREADED);
// TODO: Perform work here.
// Free the COM library.
CoUninitialize();
}
启用 COM 的应用程序示例
本部分演示一个启用 COM 的完整应用程序,该应用程序使用 IScriptControl
接口执行计算第 n 个斐波纳契数的脚本。 此示例首先从主线程调用脚本,然后使用 PPL 和代理并发调用脚本。
请考虑以下帮助程序函数 RunScriptProcedure
,该函数在 IScriptControl
对象中调用一个过程。
// Calls a procedure in an IScriptControl object.
template<size_t ArgCount>
_variant_t RunScriptProcedure(IScriptControlPtr pScriptControl,
_bstr_t& procedureName, array<_variant_t, ArgCount>& arguments)
{
// Create a 1-dimensional, 0-based safe array.
SAFEARRAYBOUND rgsabound[] = { ArgCount, 0 };
CComSafeArray<VARIANT> sa(rgsabound, 1U);
// Copy the arguments to the safe array.
LONG lIndex = 0;
for_each(begin(arguments), end(arguments), [&](_variant_t& arg) {
HRESULT hr = sa.SetAt(lIndex, arg);
if (FAILED(hr))
throw hr;
++lIndex;
});
// Call the procedure in the script.
return pScriptControl->Run(procedureName, &sa.m_psa);
}
wmain
函数会创建 IScriptControl
对象,向该对象添加计算第 n 个斐波纳契数的脚本代码,然后调用 RunScriptProcedure
函数以运行该脚本。
int wmain()
{
HRESULT hr;
// Enable COM on this thread for the lifetime of the program.
CCoInitializer coinit(COINIT_MULTITHREADED);
// Create the script control.
IScriptControlPtr pScriptControl(__uuidof(ScriptControl));
// Set script control properties.
pScriptControl->Language = "JScript";
pScriptControl->AllowUI = TRUE;
// Add script code that computes the nth Fibonacci number.
hr = pScriptControl->AddCode(
"function fib(n) { if (n<2) return n; else return fib(n-1) + fib(n-2); }" );
if (FAILED(hr))
return hr;
// Test the script control by computing the 15th Fibonacci number.
wcout << endl << L"Main Thread:" << endl;
LONG lValue = 15;
array<_variant_t, 1> args = { _variant_t(lValue) };
_variant_t result = RunScriptProcedure(
pScriptControl,
_bstr_t("fib"),
args);
// Print the result.
wcout << L"fib(" << lValue << L") = " << result.lVal << endl;
return S_OK;
}
从 PPL 调用脚本
以下函数 ParallelFibonacci
使用 concurrency::parallel_for 算法并行调用脚本。 此函数使用 CCoInitializer
类在每个任务迭代期间管理 COM 库的生存期。
// Computes multiple Fibonacci numbers in parallel by using
// the parallel_for algorithm.
HRESULT ParallelFibonacci(IScriptControlPtr pScriptControl)
{
try {
parallel_for(10L, 20L, [&pScriptControl](LONG lIndex)
{
// Enable COM for the lifetime of the task.
CCoInitializer coinit(COINIT_MULTITHREADED);
// Call the helper function to run the script procedure.
array<_variant_t, 1> args = { _variant_t(lIndex) };
_variant_t result = RunScriptProcedure(
pScriptControl,
_bstr_t("fib"),
args);
// Print the result.
wstringstream ss;
ss << L"fib(" << lIndex << L") = " << result.lVal << endl;
wcout << ss.str();
});
}
catch (HRESULT hr) {
return hr;
}
return S_OK;
}
若要将 ParallelFibonacci
函数用于示例,请在 wmain
函数返回之前添加以下代码。
// Use the parallel_for algorithm to compute multiple
// Fibonacci numbers in parallel.
wcout << endl << L"Parallel Fibonacci:" << endl;
if (FAILED(hr = ParallelFibonacci(pScriptControl)))
return hr;
从代理调用脚本
以下示例演示了 FibonacciScriptAgent
类,该类调用脚本过程来计算第 n 个斐波纳契数。 FibonacciScriptAgent
类使用消息传递从主程序接收脚本函数的输入值。 run
方法在整个任务中管理 COM 库的生存期。
// A basic agent that calls a script procedure to compute the
// nth Fibonacci number.
class FibonacciScriptAgent : public agent
{
public:
FibonacciScriptAgent(IScriptControlPtr pScriptControl, ISource<LONG>& source)
: _pScriptControl(pScriptControl)
, _source(source) { }
public:
// Retrieves the result code.
HRESULT GetHRESULT()
{
return receive(_result);
}
protected:
void run()
{
// Initialize the COM library on the current thread.
CoInitializeEx(NULL, COINIT_MULTITHREADED);
// Read values from the message buffer until
// we receive the sentinel value.
LONG lValue;
while ((lValue = receive(_source)) != Sentinel)
{
try {
// Call the helper function to run the script procedure.
array<_variant_t, 1> args = { _variant_t(lValue) };
_variant_t result = RunScriptProcedure(
_pScriptControl,
_bstr_t("fib"),
args);
// Print the result.
wstringstream ss;
ss << L"fib(" << lValue << L") = " << result.lVal << endl;
wcout << ss.str();
}
catch (HRESULT hr) {
send(_result, hr);
break;
}
}
// Set the result code (does nothing if a value is already set).
send(_result, S_OK);
// Free the COM library.
CoUninitialize();
// Set the agent to the finished state.
done();
}
public:
// Signals the agent to terminate.
static const LONG Sentinel = 0L;
private:
// The IScriptControl object that contains the script procedure.
IScriptControlPtr _pScriptControl;
// Message buffer from which to read arguments to the
// script procedure.
ISource<LONG>& _source;
// The result code for the overall operation.
single_assignment<HRESULT> _result;
};
以下函数 AgentFibonacci
会创建多个 FibonacciScriptAgent
对象,并使用消息传递将多个输入值发送给这些对象。
// Computes multiple Fibonacci numbers in parallel by using
// asynchronous agents.
HRESULT AgentFibonacci(IScriptControlPtr pScriptControl)
{
// Message buffer to hold arguments to the script procedure.
unbounded_buffer<LONG> values;
// Create several agents.
array<agent*, 3> agents =
{
new FibonacciScriptAgent(pScriptControl, values),
new FibonacciScriptAgent(pScriptControl, values),
new FibonacciScriptAgent(pScriptControl, values),
};
// Start each agent.
for_each(begin(agents), end(agents), [](agent* a) {
a->start();
});
// Send a few values to the agents.
send(values, 30L);
send(values, 22L);
send(values, 10L);
send(values, 12L);
// Send a sentinel value to each agent.
for_each(begin(agents), end(agents), [&values](agent*) {
send(values, FibonacciScriptAgent::Sentinel);
});
// Wait for all agents to finish.
agent::wait_for_all(3, &agents[0]);
// Determine the result code.
HRESULT hr = S_OK;
for_each(begin(agents), end(agents), [&hr](agent* a) {
HRESULT hrTemp;
if (FAILED(hrTemp =
reinterpret_cast<FibonacciScriptAgent*>(a)->GetHRESULT()))
{
hr = hrTemp;
}
});
// Clean up.
for_each(begin(agents), end(agents), [](agent* a) {
delete a;
});
return hr;
}
若要将 AgentFibonacci
函数用于示例,请在 wmain
函数返回之前添加以下代码。
// Use asynchronous agents to compute multiple
// Fibonacci numbers in parallel.
wcout << endl << L"Agent Fibonacci:" << endl;
if (FAILED(hr = AgentFibonacci(pScriptControl)))
return hr;
完整示例
以下代码演示完整示例,其中使用并行算法和异步代理调用计算斐波纳契数的脚本过程。
// parallel-scripts.cpp
// compile with: /EHsc
#include <agents.h>
#include <ppl.h>
#include <array>
#include <sstream>
#include <iostream>
#include <atlsafe.h>
// TODO: Change this path if necessary.
#import "C:\windows\system32\msscript.ocx"
using namespace concurrency;
using namespace MSScriptControl;
using namespace std;
// An exception-safe wrapper class that manages the lifetime
// of the COM library in a given scope.
class CCoInitializer
{
public:
explicit CCoInitializer(DWORD dwCoInit = COINIT_APARTMENTTHREADED)
: _coinitialized(false)
{
// Initialize the COM library on the current thread.
HRESULT hr = CoInitializeEx(NULL, dwCoInit);
if (FAILED(hr))
throw hr;
_coinitialized = true;
}
~CCoInitializer()
{
// Free the COM library.
if (_coinitialized)
CoUninitialize();
}
private:
// Flags whether COM was properly initialized.
bool _coinitialized;
// Hide copy constructor and assignment operator.
CCoInitializer(const CCoInitializer&);
CCoInitializer& operator=(const CCoInitializer&);
};
// Calls a procedure in an IScriptControl object.
template<size_t ArgCount>
_variant_t RunScriptProcedure(IScriptControlPtr pScriptControl,
_bstr_t& procedureName, array<_variant_t, ArgCount>& arguments)
{
// Create a 1-dimensional, 0-based safe array.
SAFEARRAYBOUND rgsabound[] = { ArgCount, 0 };
CComSafeArray<VARIANT> sa(rgsabound, 1U);
// Copy the arguments to the safe array.
LONG lIndex = 0;
for_each(begin(arguments), end(arguments), [&](_variant_t& arg) {
HRESULT hr = sa.SetAt(lIndex, arg);
if (FAILED(hr))
throw hr;
++lIndex;
});
// Call the procedure in the script.
return pScriptControl->Run(procedureName, &sa.m_psa);
}
// Computes multiple Fibonacci numbers in parallel by using
// the parallel_for algorithm.
HRESULT ParallelFibonacci(IScriptControlPtr pScriptControl)
{
try {
parallel_for(10L, 20L, [&pScriptControl](LONG lIndex)
{
// Enable COM for the lifetime of the task.
CCoInitializer coinit(COINIT_MULTITHREADED);
// Call the helper function to run the script procedure.
array<_variant_t, 1> args = { _variant_t(lIndex) };
_variant_t result = RunScriptProcedure(
pScriptControl,
_bstr_t("fib"),
args);
// Print the result.
wstringstream ss;
ss << L"fib(" << lIndex << L") = " << result.lVal << endl;
wcout << ss.str();
});
}
catch (HRESULT hr) {
return hr;
}
return S_OK;
}
// A basic agent that calls a script procedure to compute the
// nth Fibonacci number.
class FibonacciScriptAgent : public agent
{
public:
FibonacciScriptAgent(IScriptControlPtr pScriptControl, ISource<LONG>& source)
: _pScriptControl(pScriptControl)
, _source(source) { }
public:
// Retrieves the result code.
HRESULT GetHRESULT()
{
return receive(_result);
}
protected:
void run()
{
// Initialize the COM library on the current thread.
CoInitializeEx(NULL, COINIT_MULTITHREADED);
// Read values from the message buffer until
// we receive the sentinel value.
LONG lValue;
while ((lValue = receive(_source)) != Sentinel)
{
try {
// Call the helper function to run the script procedure.
array<_variant_t, 1> args = { _variant_t(lValue) };
_variant_t result = RunScriptProcedure(
_pScriptControl,
_bstr_t("fib"),
args);
// Print the result.
wstringstream ss;
ss << L"fib(" << lValue << L") = " << result.lVal << endl;
wcout << ss.str();
}
catch (HRESULT hr) {
send(_result, hr);
break;
}
}
// Set the result code (does nothing if a value is already set).
send(_result, S_OK);
// Free the COM library.
CoUninitialize();
// Set the agent to the finished state.
done();
}
public:
// Signals the agent to terminate.
static const LONG Sentinel = 0L;
private:
// The IScriptControl object that contains the script procedure.
IScriptControlPtr _pScriptControl;
// Message buffer from which to read arguments to the
// script procedure.
ISource<LONG>& _source;
// The result code for the overall operation.
single_assignment<HRESULT> _result;
};
// Computes multiple Fibonacci numbers in parallel by using
// asynchronous agents.
HRESULT AgentFibonacci(IScriptControlPtr pScriptControl)
{
// Message buffer to hold arguments to the script procedure.
unbounded_buffer<LONG> values;
// Create several agents.
array<agent*, 3> agents =
{
new FibonacciScriptAgent(pScriptControl, values),
new FibonacciScriptAgent(pScriptControl, values),
new FibonacciScriptAgent(pScriptControl, values),
};
// Start each agent.
for_each(begin(agents), end(agents), [](agent* a) {
a->start();
});
// Send a few values to the agents.
send(values, 30L);
send(values, 22L);
send(values, 10L);
send(values, 12L);
// Send a sentinel value to each agent.
for_each(begin(agents), end(agents), [&values](agent*) {
send(values, FibonacciScriptAgent::Sentinel);
});
// Wait for all agents to finish.
agent::wait_for_all(3, &agents[0]);
// Determine the result code.
HRESULT hr = S_OK;
for_each(begin(agents), end(agents), [&hr](agent* a) {
HRESULT hrTemp;
if (FAILED(hrTemp =
reinterpret_cast<FibonacciScriptAgent*>(a)->GetHRESULT()))
{
hr = hrTemp;
}
});
// Clean up.
for_each(begin(agents), end(agents), [](agent* a) {
delete a;
});
return hr;
}
int wmain()
{
HRESULT hr;
// Enable COM on this thread for the lifetime of the program.
CCoInitializer coinit(COINIT_MULTITHREADED);
// Create the script control.
IScriptControlPtr pScriptControl(__uuidof(ScriptControl));
// Set script control properties.
pScriptControl->Language = "JScript";
pScriptControl->AllowUI = TRUE;
// Add script code that computes the nth Fibonacci number.
hr = pScriptControl->AddCode(
"function fib(n) { if (n<2) return n; else return fib(n-1) + fib(n-2); }" );
if (FAILED(hr))
return hr;
// Test the script control by computing the 15th Fibonacci number.
wcout << L"Main Thread:" << endl;
long n = 15;
array<_variant_t, 1> args = { _variant_t(n) };
_variant_t result = RunScriptProcedure(
pScriptControl,
_bstr_t("fib"),
args);
// Print the result.
wcout << L"fib(" << n << L") = " << result.lVal << endl;
// Use the parallel_for algorithm to compute multiple
// Fibonacci numbers in parallel.
wcout << endl << L"Parallel Fibonacci:" << endl;
if (FAILED(hr = ParallelFibonacci(pScriptControl)))
return hr;
// Use asynchronous agents to compute multiple
// Fibonacci numbers in parallel.
wcout << endl << L"Agent Fibonacci:" << endl;
if (FAILED(hr = AgentFibonacci(pScriptControl)))
return hr;
return S_OK;
}
该示例生成以下示例输出。
Main Thread:
fib(15) = 610
Parallel Fibonacci:
fib(15) = 610
fib(10) = 55
fib(16) = 987
fib(18) = 2584
fib(11) = 89
fib(17) = 1597
fib(19) = 4181
fib(12) = 144
fib(13) = 233
fib(14) = 377
Agent Fibonacci:
fib(30) = 832040
fib(22) = 17711
fib(10) = 55
fib(12) = 144
编译代码
复制示例代码,并将它粘贴到 Visual Studio 项目中,或粘贴到名为 parallel-scripts.cpp
的文件中,再在 Visual Studio 命令提示符窗口中运行以下命令。
cl.exe /EHsc parallel-scripts.cpp /link ole32.lib