用于 ML 的 Databricks Runtime 6.0 (EoS)

注意

对此 Databricks Runtime 版本的支持已结束。 有关终止支持日期,请参阅终止支持历史记录。 有关所有受支持的 Databricks Runtime 版本,请参阅 Databricks Runtime 发行说明版本和兼容性

Databricks 于 2019 年 10 月发布此版本。

用于机器学习的 Databricks Runtime 6.0 基于 Databricks Runtime 6.0 (EoS) 为机器学习和数据科学提供随时可用的环境。 Databricks Runtime ML 包含许多常用的机器学习库,包括 TensorFlow、PyTorch、Keras 和 XGBoost。 它还支持使用 Horovod 进行分布式深度学习训练。

有关详细信息,包括有关如何创建 Databricks Runtime ML 群集的说明,请参阅 Databricks 上的 AI 和机器学习

新增功能

Databricks Runtime 6.0 ML 是基于 Databricks Runtime 6.0 构建的。 若要了解 Databricks Runtime 6.0 中的新增功能,请参阅 Databricks Runtime 6.0 (EoS) 发行说明。

使用新的 MLflow Spark 数据源大规模查询 MLflow 试验数据

MLflow 试验 Spark 数据源提供了一种用于加载 MLflow 试验运行数据的标准 API。 这样便可使用 DataFrame API 大规模查询和分析 MLflow 试验数据。 对于特定试验,DataFrame 包含 run_ids、指标、参数、标签、start_time、end_time、状态和项目的 artifact_uri。 请参阅 MLflow 试验

改进

  • Hyperopt 正式版

    Azure Databricks 上的 Hyperopt 现已正式发布。 自公共预览以来的显著改进包括对 Spark 辅助角色上的 MLflow 日志记录的支持、PySpark 广播变量的正确处理,以及使用 Hyperopt 选择模型的新指南。 我们还修复了日志消息、错误处理、UI 中的小错误,使文档更易于阅读。 有关详细信息,请参阅 Hyperopt 文档

    我们已更新 Azure Databricks 记录 Hyperopt 试验的方式,现在你可以通过将指标传递到 mlflow.log_metric 函数(请参阅 log_metric)来记录 Hyperopt 运行期间的自定义指标。 如果要记录自定义指标以及损失(默认在调用 hyperopt.fmin 函数时记录),这很有用。

  • MLflow

    • 添加了 MLflow Java 客户端 1.2.0
    • MLflow 现已提升为顶层
  • 升级了机器学习库

    • Horovod 已从 0.16.4 升级到 0.18.1
    • MLflow 已从 1.0.0 升级到 1.2.0
  • Anaconda 分发已从 5.2.0 升级到 2019.03

删除

  • Databricks ML 模型导出已删除。 请改用 MLeap 来导入和导出模型。

  • Hyperopt 库中,删除了 hyperopt.SparkTrials 的以下属性:

    • SparkTrials.successful_trials_count
    • SparkTrials.failed_trials_count
    • SparkTrials.cancelled_trials_count
    • SparkTrials.total_trials_count

    将其替换为以下函数:

    • SparkTrials.count_successful_trials()
    • SparkTrials.count_failed_trials()
    • SparkTrials.count_cancelled_trials()
    • SparkTrials.count_total_trials()

系统环境

Databricks Runtime 6.0 ML 中的系统环境与 Databricks Runtime 6.0 不同,如下所示:

以下部分列出了 Databricks Runtime 6.0 ML 中包含的库,这些库不同于 Databricks Runtime 6.0 中包含的库。

顶层库

Databricks Runtime 6.0 ML 包含以下顶层

Python 库

Databricks Runtime 6.0 ML 使用 Conda 进行 Python 包管理,并且包含许多常用的 ML 包。 下一部分介绍用于 Databricks Runtime 6.0 ML 的 Conda 环境。

CPU 群集上的 Python 3

name: databricks-ml
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=2.0=cpu_0
  - _tflow_select=2.3.0=mkl
  - absl-py=0.7.1=py37_0
  - asn1crypto=0.24.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.6=py37h7b6447c_0
  - blas=1.0=mkl
  - boto=2.49.0=py37_0
  - boto3=1.9.162=py_0
  - botocore=1.12.163=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2019.1.23=0
  - certifi=2019.3.9=py37_0
  - cffi=1.12.2=py37h2e261b9_1
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=0.8.0=py37_0
  - colorama=0.4.1=py37_0
  - configparser=3.7.4=py37_0
  - cryptography=2.6.1=py37h1ba5d50_0
  - cycler=0.10.0=py37_0
  - cython=0.29.6=py37he6710b0_0
  - decorator=4.4.0=py37_1
  - docutils=0.14=py37_0
  - entrypoints=0.3=py37_0
  - et_xmlfile=1.0.1=py37_0
  - flask=1.0.2=py37_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.17.1=py37_0
  - gast=0.2.2=py37_0
  - gitdb2=2.0.5=py37_0
  - gitpython=2.1.11=py37_0
  - grpcio=1.16.1=py37hf8bcb03_1
  - gunicorn=19.9.0=py37_0
  - h5py=2.9.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - html5lib=1.0.1=py_0
  - icu=58.2=h9c2bf20_1
  - idna=2.8=py37_0
  - intel-openmp=2019.3=199
  - ipython=7.4.0=py37h39e3cac_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py37_0
  - jdcal=1.4=py37_0
  - jedi=0.13.3=py37_0
  - jinja2=2.10=py37_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - keras=2.2.4=0
  - keras-applications=1.0.8=py_0
  - keras-base=2.2.4=py37_0
  - keras-preprocessing=1.1.0=py_1
  - kiwisolver=1.0.1=py37hf484d3e_0
  - krb5=1.16.1=h173b8e3_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=8.2.0=hdf63c60_1
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.36=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.8.0=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=8.2.0=hdf63c60_1
  - libtiff=4.0.10=h2733197_2
  - libxgboost=0.90=he6710b0_0
  - libxml2=2.9.9=hea5a465_1
  - libxslt=1.1.33=h7d1a2b0_0
  - llvmlite=0.28.0=py37hd408876_0
  - lxml=4.3.2=py37hefd8a0e_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - mkl=2019.3=199
  - mkl_fft=1.0.10=py37ha843d7b_0
  - mkl_random=1.0.2=py37hd81dba3_0
  - mock=3.0.5=py37_0
  - ncurses=6.1=he6710b0_1
  - networkx=2.2=py37_1
  - ninja=1.9.0=py37hfd86e86_0
  - nose=1.3.7=py37_2
  - numba=0.43.1=py37h962f231_0
  - numpy=1.16.2=py37h7e9f1db_0
  - numpy-base=1.16.2=py37hde5b4d6_0
  - olefile=0.46=py37_0
  - openpyxl=2.6.1=py37_1
  - openssl=1.1.1b=h7b6447c_1
  - pandas=0.24.2=py37he6710b0_0
  - paramiko=2.4.2=py37_0
  - parso=0.3.4=py37_0
  - pathlib2=2.3.3=py37_0
  - patsy=0.5.1=py37_0
  - pexpect=4.6.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=5.4.1=py37h34e0f95_0
  - pip=19.0.3=py37_0
  - ply=3.11=py37_0
  - prompt_toolkit=2.0.9=py37_0
  - protobuf=3.8.0=py37he6710b0_0
  - psutil=5.6.1=py37h7b6447c_0
  - psycopg2=2.7.6.1=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - py-xgboost=0.90=py37he6710b0_0
  - py-xgboost-cpu=0.90=py37_0
  - pyasn1=0.4.6=py_0
  - pycparser=2.19=py37_0
  - pygments=2.3.1=py37_0
  - pymongo=3.8.0=py37he6710b0_1
  - pynacl=1.3.0=py37h7b6447c_0
  - pyopenssl=19.0.0=py37_0
  - pyparsing=2.3.1=py37_0
  - pysocks=1.6.8=py37_0
  - python=3.7.3=h0371630_0
  - python-dateutil=2.8.0=py37_0
  - python-editor=1.0.4=py_0
  - pytorch-cpu=1.1.0=py3.7_cpu_0
  - pytz=2018.9=py37_0
  - pyyaml=5.1=py37h7b6447c_0
  - readline=7.0=h7b6447c_5
  - requests=2.21.0=py37_0
  - s3transfer=0.2.1=py37_0
  - scikit-learn=0.20.3=py37hd81dba3_0
  - scipy=1.2.1=py37h7c811a0_0
  - setuptools=40.8.0=py37_0
  - simplejson=3.16.0=py37h14c3975_0
  - singledispatch=3.4.0.3=py37_0
  - six=1.12.0=py37_0
  - smmap2=2.0.5=py37_0
  - sqlite=3.27.2=h7b6447c_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py37h035aef0_0
  - tabulate=0.8.3=py37_0
  - tensorboard=1.13.1=py37hf484d3e_0
  - tensorflow=1.13.1=mkl_py37h54b294f_0
  - tensorflow-base=1.13.1=mkl_py37h7ce6ba3_0
  - tensorflow-estimator=1.13.0=py_0
  - tensorflow-mkl=1.13.1=h4fcabd2_0
  - termcolor=1.1.0=py37_1
  - tk=8.6.8=hbc83047_0
  - torchvision-cpu=0.3.0=py37_cuNone_1
  - tqdm=4.31.1=py37_1
  - traitlets=4.3.2=py37_0
  - urllib3=1.24.1=py37_0
  - virtualenv=16.0.0=py37_0
  - wcwidth=0.1.7=py37_0
  - webencodings=0.5.1=py37_1
  - websocket-client=0.56.0=py37_0
  - werkzeug=0.14.1=py37_0
  - wheel=0.33.1=py37_0
  - wrapt=1.11.1=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - argparse==1.4.0
    - databricks-cli==0.9.0
    - docker==4.0.2
    - fusepy==2.0.4
    - gorilla==0.3.0
    - horovod==0.18.1
    - hyperopt==0.1.2.db8
    - matplotlib==3.0.3
    - mleap==0.8.1
    - mlflow==1.2.0
    - nose-exclude==0.5.0
    - pyarrow==0.13.0
    - querystring-parser==1.2.4
    - seaborn==0.9.0
    - tensorboardx==1.8
prefix: /databricks/conda/envs/databricks-ml

包含 Python 模块的 Spark 包

Spark 包 Python 模块 版本
graphframes graphframes 0.7.0-db1-spark2.4
spark-deep-learning sparkdl 1.5.0-db5-spark2.4
tensorframes tensorframes 0.7.0-s_2.11

R 库

R 库与 Databricks Runtime 6.0 中的 R 库完全相同。

Java 库和 Scala 库(Scala 2.11 群集)

除了 Databricks Runtime 6.0 中的 Java 库和 Scala 库之外,Databricks Runtime 6.0 ML 还包含以下 JAR:

组 ID 项目 ID 版本
com.databricks spark-deep-learning 1.5.0-db5-spark2.4
com.typesafe.akka akka-actor_2.11 2.3.11
ml.combust.mleap mleap-databricks-runtime_2.11 0.14.0
ml.dmlc xgboost4j 0.90
ml.dmlc xgboost4j-spark 0.90
org.graphframes graphframes_2.11 0.7.0-db1-spark2.4
org.mlflow mlflow-client 1.2.0
org.tensorflow libtensorflow 1.13.1
org.tensorflow libtensorflow_jni 1.13.1
org.tensorflow spark-tensorflow-connector_2.11 1.13.1
org.tensorflow tensorflow 1.13.1
org.tensorframes tensorframes 0.7.0-s_2.11