你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn。
通过 Spark 对 Azure Cosmos DB for Apache Cassandra 执行的表复制操作
适用对象: Cassandra
本文介绍如何通过 Spark 在 Azure Cosmos DB for Apache Cassandra 中的表之间复制数据。 本文中描述的命令还可用于将数据从 Apache Cassandra 表复制到 Azure Cosmos DB for Apache Cassandra 表。
API for Cassandra 配置
在笔记本群集中设置以下 spark 配置。 这是一次性活动。
//Connection-related
spark.cassandra.connection.host YOUR_ACCOUNT_NAME.cassandra.cosmosdb.azure.com
spark.cassandra.connection.port 10350
spark.cassandra.connection.ssl.enabled true
spark.cassandra.auth.username YOUR_ACCOUNT_NAME
spark.cassandra.auth.password YOUR_ACCOUNT_KEY
// if using Spark 2.x
// spark.cassandra.connection.factory com.microsoft.azure.cosmosdb.cassandra.CosmosDbConnectionFactory
//Throughput-related...adjust as needed
spark.cassandra.output.batch.size.rows 1
// spark.cassandra.connection.connections_per_executor_max 10 // Spark 2.x
spark.cassandra.connection.remoteConnectionsPerExecutor 10 // Spark 3.x
spark.cassandra.output.concurrent.writes 1000
spark.cassandra.concurrent.reads 512
spark.cassandra.output.batch.grouping.buffer.size 1000
spark.cassandra.connection.keep_alive_ms 600000000
注意
如果使用的是 Spark 3.x,则无需安装 Azure Cosmos DB 帮助程序和连接工厂。 对于 Spark 3 连接器,还应该使用 remoteConnectionsPerExecutor
而不是 connections_per_executor_max
(见上文)。
警告
本文展示的 Spark 3 示例已使用 Spark 3.2.1 版本和相应的 Cassandra Spark 连接器 com.datastax.spark:spark-cassandra-connector-assembly_2.12:3.2.0 测试过。 更高版本的 Spark 和/或 Cassandra 连接器可能无法正常运行。
插入示例数据
import org.apache.spark.sql.cassandra._
//Spark connector
import com.datastax.spark.connector._
import com.datastax.spark.connector.cql.CassandraConnector
//if using Spark 2.x, CosmosDB library for multiple retry
//import com.microsoft.azure.cosmosdb.cassandra
val booksDF = Seq(
("b00001", "Arthur Conan Doyle", "A study in scarlet", 1887,11.33),
("b00023", "Arthur Conan Doyle", "A sign of four", 1890,22.45),
("b01001", "Arthur Conan Doyle", "The adventures of Sherlock Holmes", 1892,19.83),
("b00501", "Arthur Conan Doyle", "The memoirs of Sherlock Holmes", 1893,14.22),
("b00300", "Arthur Conan Doyle", "The hounds of Baskerville", 1901,12.25)
).toDF("book_id", "book_author", "book_name", "book_pub_year","book_price")
booksDF.write
.mode("append")
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks", "output.consistency.level" -> "ALL", "ttl" -> "10000000"))
.save()
在表之间复制数据
在表之间复制数据(存在目标表)
//1) Create destination table
val cdbConnector = CassandraConnector(sc)
cdbConnector.withSessionDo(session => session.execute("CREATE TABLE IF NOT EXISTS books_ks.books_copy(book_id TEXT PRIMARY KEY,book_author TEXT, book_name TEXT,book_pub_year INT,book_price FLOAT) WITH cosmosdb_provisioned_throughput=4000;"))
//2) Read from one table
val readBooksDF = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
//3) Save to destination table
readBooksDF.write
.cassandraFormat("books_copy", "books_ks", "")
.save()
//4) Validate copy to destination table
sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books_copy", "keyspace" -> "books_ks"))
.load
.show
在表之间复制数据(不存在目标表)
import com.datastax.spark.connector._
//1) Read from source table
val readBooksDF = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
//2) Creates an empty table in the keyspace based off of source table
val newBooksDF = readBooksDF
newBooksDF.createCassandraTable(
"books_ks",
"books_new",
partitionKeyColumns = Some(Seq("book_id"))
//clusteringKeyColumns = Some(Seq("some column"))
)
//3) Saves the data from the source table into the newly created table
newBooksDF.write
.cassandraFormat("books_new", "books_ks","")
.mode(SaveMode.Append)
.save()
//4) Validate table creation and data load
sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books_new", "keyspace" -> "books_ks"))
.load
.show
输出-
+-------+------------------+--------------------+----------+-------------+
|book_id| book_author| book_name|book_price|book_pub_year|
+-------+------------------+--------------------+----------+-------------+
| b00300|Arthur Conan Doyle|The hounds of Bas...| 12.25| 1901|
| b00001|Arthur Conan Doyle| A study in scarlet| 11.33| 1887|
| b00023|Arthur Conan Doyle| A sign of four| 22.45| 1890|
| b00501|Arthur Conan Doyle|The memoirs of Sh...| 14.22| 1893|
| b01001|Arthur Conan Doyle|The adventures of...| 19.83| 1892|
+-------+------------------+--------------------+----------+-------------+
import com.datastax.spark.connector._
readBooksDF: org.apache.spark.sql.DataFrame = [book_id: string, book_author: string ... 3 more fields]
newBooksDF: org.apache.spark.sql.DataFrame = [book_id: string, book_author: string ... 3 more fields]
后续步骤
- 使用 Java 应用程序开始创建 API for Cassandra 帐户、数据库和表。
- 使用 Java 应用程序将示例数据加载到 API for Cassandra 表。
- 使用 Java 应用程序从 API for Cassandra 帐户查询数据。