你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn。
结构化输出
结构化输出使模型遵循你在推理 API 调用中提供的 JSON 架构定义。 这与旧的 JSON 模式功能形成鲜明对比,该功能保证将生成有效的 JSON,但无法确保严格遵循提供的架构。 建议使用结构化输出进行函数调用、提取结构化数据以及生成复杂的多步骤工作流。
注意
以下方案目前不支持结构化输出:
- 自带数据方案。
- 助手 或 Azure AI 代理服务。
-
gpt-4o-audio-preview
和gpt-4o-mini-audio-preview
版本:2024-12-17
。
支持的模型
-
o3-mini
版本2025-01-31
-
o1
版本:2024-12-17
-
gpt-4o-mini
版本:2024-07-18
-
gpt-4o
版本:2024-08-06
API 支持
在 API 版本 2024-08-01-preview
中首次添加了对结构化输出的支持。 它在最新的预览版 API 以及最新的 GA API 中提供:2024-10-21
。
入门
可使用 Pydantic
在 Python 中定义对象架构。 根据你运行的 OpenAI 和 Pydantic
库的版本,你可能需要升级到较新版本。 这些示例是针对 openai 1.42.0
和 pydantic 2.8.2
进行测试的。
pip install openai pydantic --upgrade
如果对使用 Microsoft Entra ID 进行身份验证不熟悉,请参阅如何使用 Microsoft Entra ID 身份验证配置 Azure OpenAI 服务。
from pydantic import BaseModel
from openai import AzureOpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
azure_ad_token_provider=token_provider,
api_version="2024-10-21"
)
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
completion = client.beta.chat.completions.parse(
model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
],
response_format=CalendarEvent,
)
event = completion.choices[0].message.parsed
print(event)
print(completion.model_dump_json(indent=2))
输出
name='Science Fair' date='Friday' participants=['Alice', 'Bob']
{
"id": "chatcmpl-A1EUP2fAmL4SeB1lVMinwM7I2vcqG",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": null,
"message": {
"content": "{\n \"name\": \"Science Fair\",\n \"date\": \"Friday\",\n \"participants\": [\"Alice\", \"Bob\"]\n}",
"refusal": null,
"role": "assistant",
"function_call": null,
"tool_calls": [],
"parsed": {
"name": "Science Fair",
"date": "Friday",
"participants": [
"Alice",
"Bob"
]
}
}
}
],
"created": 1724857389,
"model": "gpt-4o-2024-08-06",
"object": "chat.completion",
"service_tier": null,
"system_fingerprint": "fp_1c2eaec9fe",
"usage": {
"completion_tokens": 27,
"prompt_tokens": 32,
"total_tokens": 59
}
}
使用结构化输出进行函数调用
可以通过一个参数来启用函数调用的结构化输出,方法是提供 strict: true
。
注意
并行函数调用不支持结构化输出。 使用结构化输出时,将 parallel_tool_calls
设置为 false
。
from enum import Enum
from typing import Union
from pydantic import BaseModel
import openai
from openai import AzureOpenAI
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-10-21"
)
class GetDeliveryDate(BaseModel):
order_id: str
tools = [openai.pydantic_function_tool(GetDeliveryDate)]
messages = []
messages.append({"role": "system", "content": "You are a helpful customer support assistant. Use the supplied tools to assist the user."})
messages.append({"role": "user", "content": "Hi, can you tell me the delivery date for my order #12345?"})
response = client.chat.completions.create(
model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
messages=messages,
tools=tools
)
print(response.choices[0].message.tool_calls[0].function)
print(response.model_dump_json(indent=2))
入门
将以下包添加到项目以用于 Azure OpenAI:
- Azure.AI.OpenAI:为 Azure OpenAI 客户端提供基于标准 OpenAI 库依赖项构建的 Azure 特定功能。
- Azure.Identity:提供跨 Azure SDK 库的 Microsoft Entra ID 令牌身份验证支持。
- Newtonsoft.Json.Schema:为处理 JSON 架构提供有用的实用工具。
dotnet add package Azure.AI.OpenAI --prerelease
dotnet add package Azure.Identity
dotnet add package Newtonsoft.Json.Schema
如果对使用 Microsoft Entra ID 进行身份验证不熟悉,请参阅如何使用 Microsoft Entra ID 身份验证配置 Azure OpenAI 服务。
using Azure.AI.OpenAI;
using Azure.Identity;
using Newtonsoft.Json.Schema.Generation;
using OpenAI.Chat;
using System.ClientModel;
// Create the clients
string endpoint = GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");
AzureOpenAIClient openAIClient = new(
new Uri(endpoint),
new DefaultAzureCredential());
var client = openAIClient.GetChatClient("gpt-4o");
// Create a chat with initial prompts
var chat = new List<ChatMessage>()
{
new SystemChatMessage("Extract the event information and projected weather."),
new UserChatMessage("Alice and Bob are going to a science fair in Seattle on June 1st, 2025.")
};
// Get the schema of the class for the structured response
JSchemaGenerator generator = new JSchemaGenerator();
var jsonSchema = generator.Generate(typeof(CalendarEvent)).ToString();
// Get a completion with structured output
var chatUpdates = client.CompleteChatStreamingAsync(
chat,
new ChatCompletionOptions()
{
ResponseFormat = ChatResponseFormat.CreateJsonSchemaFormat(
"calenderEvent",
BinaryData.FromString(jsonSchema))
});
// Write the structured response
await foreach (var chatUpdate in chatUpdates)
{
foreach (var contentPart in chatUpdate.ContentUpdate)
{
Console.Write(contentPart.Text);
}
}
// The class for the structured response
public class CalendarEvent()
{
public string Name { get; set; }
public string Date { get; set; }
public List<string> Participants { get; set; }
}
使用结构化输出进行函数调用
可以通过一个参数来启用函数调用的结构化输出,方法是提供 strict: true
。
using Azure.AI.OpenAI;
using Newtonsoft.Json.Schema.Generation;
using OpenAI.Chat;
using System.ClientModel;
// Create the clients
string endpoint = GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");
AzureOpenAIClient openAIClient = new(
new Uri(endpoint),
new DefaultAzureCredential());
var chatClient = openAIClient.GetChatClient("gpt-4o");
// Local function to be used by the assistant tooling
string GetTemperature(string location, string date)
{
// Placeholder for Weather API
if(location == "Seattle" && date == "2025-06-01")
{
return "75";
}
return "50";
}
// Create a tool to get the temperature
ChatTool GetTemperatureTool = ChatTool.CreateFunctionTool(
functionName: nameof(GetTemperature),
functionSchemaIsStrict: true,
functionDescription: "Get the projected temperature by date and location.",
functionParameters: BinaryData.FromBytes("""
{
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location of the weather."
},
"date": {
"type": "string",
"description": "The date of the projected weather."
}
},
"required": ["location", "date"],
"additionalProperties": false
}
"""u8.ToArray())
);
// Create a chat with prompts
var chat = new List<ChatMessage>()
{
new SystemChatMessage("Extract the event information and projected weather."),
new UserChatMessage("Alice and Bob are going to a science fair in Seattle on June 1st, 2025.")
};
// Create a JSON schema for the CalendarEvent structured response
JSchemaGenerator generator = new JSchemaGenerator();
var jsonSchema = generator.Generate(typeof(CalendarEvent)).ToString();
// Get a chat completion from the AI model
var completion = chatClient.CompleteChat(
chat,
new ChatCompletionOptions()
{
ResponseFormat = ChatResponseFormat.CreateJsonSchemaFormat(
"calenderEvent",
BinaryData.FromString(jsonSchema)),
Tools = { GetTemperatureTool }
});
Console.WriteLine(completion.Value.ToolCalls[0].FunctionName);
// Structured response class
public class CalendarEvent()
{
public string Name { get; set; }
public string Date { get; set; }
public string Temperature { get; set; }
public List<string> Participants { get; set; }
}
入门
response_format
设置为 json_schema
并设置了 strict: true
。
curl -X POST https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_MODEL_DEPLOYMENT_NAME/chat/completions?api-version=2024-10-21 \
-H "api-key: $AZURE_OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "Alice and Bob are going to a science fair on Friday."}
],
"response_format": {
"type": "json_schema",
"json_schema": {
"name": "CalendarEventResponse",
"strict": true,
"schema": {
"type": "object",
"properties": {
"name": {
"type": "string"
},
"date": {
"type": "string"
},
"participants": {
"type": "array",
"items": {
"type": "string"
}
}
},
"required": [
"name",
"date",
"participants"
],
"additionalProperties": false
}
}
}
}'
输出:
{
"id": "chatcmpl-A1HKsHAe2hH9MEooYslRn9UmEwsag",
"object": "chat.completion",
"created": 1724868330,
"model": "gpt-4o-2024-08-06",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "{\n \"name\": \"Science Fair\",\n \"date\": \"Friday\",\n \"participants\": [\"Alice\", \"Bob\"]\n}"
},
"logprobs": null,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 33,
"completion_tokens": 27,
"total_tokens": 60
},
"system_fingerprint": "fp_1c2eaec9fe"
}
使用结构化输出进行函数调用
curl -X POST https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_MODEL_DEPLOYMENT_NAME/chat/completions?api-version=2024-10-21 \
-H "api-key: $AZURE_OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant. The current date is August 6, 2024. You help users query for the data they are looking for by calling the query function."
},
{
"role": "user",
"content": "look up all my orders in may of last year that were fulfilled but not delivered on time"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "query",
"description": "Execute a query.",
"strict": true,
"parameters": {
"type": "object",
"properties": {
"table_name": {
"type": "string",
"enum": ["orders"]
},
"columns": {
"type": "array",
"items": {
"type": "string",
"enum": [
"id",
"status",
"expected_delivery_date",
"delivered_at",
"shipped_at",
"ordered_at",
"canceled_at"
]
}
},
"conditions": {
"type": "array",
"items": {
"type": "object",
"properties": {
"column": {
"type": "string"
},
"operator": {
"type": "string",
"enum": ["=", ">", "<", ">=", "<=", "!="]
},
"value": {
"anyOf": [
{
"type": "string"
},
{
"type": "number"
},
{
"type": "object",
"properties": {
"column_name": {
"type": "string"
}
},
"required": ["column_name"],
"additionalProperties": false
}
]
}
},
"required": ["column", "operator", "value"],
"additionalProperties": false
}
},
"order_by": {
"type": "string",
"enum": ["asc", "desc"]
}
},
"required": ["table_name", "columns", "conditions", "order_by"],
"additionalProperties": false
}
}
}
]
}'
支持的架构和限制
Azure OpenAI 结构化输出支持与 OpenAI 相同的 JSON 架构子集。
支持的类型
- 字符串
- Number
- 布尔
- Integer
- Object
- 数组
- Enum
- anyOf
注意
根对象不能是 anyOf
类型。
所有字段都必须是必填的
必须根据需要包含所有字段或函数参数。 在下面的示例中,location
和 unit
都在 "required": ["location", "unit"]
下指定。
{
"name": "get_weather",
"description": "Fetches the weather in the given location",
"strict": true,
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get the weather for"
},
"unit": {
"type": "string",
"description": "The unit to return the temperature in",
"enum": ["F", "C"]
}
},
"additionalProperties": false,
"required": ["location", "unit"]
}
如果需要,可以通过将联合类型与 null
一起使用来模拟可选参数。 在此示例中,这是通过 "type": ["string", "null"],
行实现的。
{
"name": "get_weather",
"description": "Fetches the weather in the given location",
"strict": true,
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get the weather for"
},
"unit": {
"type": ["string", "null"],
"description": "The unit to return the temperature in",
"enum": ["F", "C"]
}
},
"additionalProperties": false,
"required": [
"location", "unit"
]
}
}
嵌套深度
一个架构总共最多可以有 100 个对象属性,最多五个嵌套级别
additionalProperties: false 必须始终在对象中设置
此属性控制对象是否可以具有 JSON 架构中未定义的附加键值对。 若要使用结构化输出,必须将此值设置为 false。
键排序
结构化输出的排序方式与提供的架构相同。 若要更改输出顺序,请修改你在推理请求中发送的架构的顺序。
不支持的特定于类型的关键字
类型 | 不支持的关键字 |
---|---|
字符串 | minlength maxLength pattern format |
Number | 最小值 最大值 multipleOf |
对象 | patternProperties unevaluatedProperties propertyNames minProperties maxProperties |
阵 列 | unevaluatedItems contains minContains maxContains minItems maxItems uniqueItems |
使用 anyOf 的嵌套架构必须遵循整个 JSON 架构子集
支持的 anyOf
架构示例:
{
"type": "object",
"properties": {
"item": {
"anyOf": [
{
"type": "object",
"description": "The user object to insert into the database",
"properties": {
"name": {
"type": "string",
"description": "The name of the user"
},
"age": {
"type": "number",
"description": "The age of the user"
}
},
"additionalProperties": false,
"required": [
"name",
"age"
]
},
{
"type": "object",
"description": "The address object to insert into the database",
"properties": {
"number": {
"type": "string",
"description": "The number of the address. Eg. for 123 main st, this would be 123"
},
"street": {
"type": "string",
"description": "The street name. Eg. for 123 main st, this would be main st"
},
"city": {
"type": "string",
"description": "The city of the address"
}
},
"additionalProperties": false,
"required": [
"number",
"street",
"city"
]
}
]
}
},
"additionalProperties": false,
"required": [
"item"
]
}
支持定义
支持的示例:
{
"type": "object",
"properties": {
"steps": {
"type": "array",
"items": {
"$ref": "#/$defs/step"
}
},
"final_answer": {
"type": "string"
}
},
"$defs": {
"step": {
"type": "object",
"properties": {
"explanation": {
"type": "string"
},
"output": {
"type": "string"
}
},
"required": [
"explanation",
"output"
],
"additionalProperties": false
}
},
"required": [
"steps",
"final_answer"
],
"additionalProperties": false
}
支持递归架构
对根递归使用 # 的示例:
{
"name": "ui",
"description": "Dynamically generated UI",
"strict": true,
"schema": {
"type": "object",
"properties": {
"type": {
"type": "string",
"description": "The type of the UI component",
"enum": ["div", "button", "header", "section", "field", "form"]
},
"label": {
"type": "string",
"description": "The label of the UI component, used for buttons or form fields"
},
"children": {
"type": "array",
"description": "Nested UI components",
"items": {
"$ref": "#"
}
},
"attributes": {
"type": "array",
"description": "Arbitrary attributes for the UI component, suitable for any element",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "The name of the attribute, for example onClick or className"
},
"value": {
"type": "string",
"description": "The value of the attribute"
}
},
"additionalProperties": false,
"required": ["name", "value"]
}
}
},
"required": ["type", "label", "children", "attributes"],
"additionalProperties": false
}
}
显式递归的示例:
{
"type": "object",
"properties": {
"linked_list": {
"$ref": "#/$defs/linked_list_node"
}
},
"$defs": {
"linked_list_node": {
"type": "object",
"properties": {
"value": {
"type": "number"
},
"next": {
"anyOf": [
{
"$ref": "#/$defs/linked_list_node"
},
{
"type": "null"
}
]
}
},
"additionalProperties": false,
"required": [
"next",
"value"
]
}
},
"additionalProperties": false,
"required": [
"linked_list"
]
}