你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn

结构化输出

结构化输出使模型遵循你在推理 API 调用中提供的 JSON 架构定义。 这与旧的 JSON 模式功能形成鲜明对比,该功能保证将生成有效的 JSON,但无法确保严格遵循提供的架构。 建议使用结构化输出进行函数调用、提取结构化数据以及生成复杂的多步骤工作流。

注意

以下方案目前不支持结构化输出:

支持的模型

  • o3-mini 版本 2025-01-31
  • o1 版本:2024-12-17
  • gpt-4o-mini 版本:2024-07-18
  • gpt-4o 版本:2024-08-06

API 支持

在 API 版本 2024-08-01-preview 中首次添加了对结构化输出的支持。 它在最新的预览版 API 以及最新的 GA API 中提供:2024-10-21

入门

可使用 Pydantic 在 Python 中定义对象架构。 根据你运行的 OpenAIPydantic的版本,你可能需要升级到较新版本。 这些示例是针对 openai 1.42.0pydantic 2.8.2 进行测试的。

pip install openai pydantic --upgrade

如果对使用 Microsoft Entra ID 进行身份验证不熟悉,请参阅如何使用 Microsoft Entra ID 身份验证配置 Azure OpenAI 服务

from pydantic import BaseModel
from openai import AzureOpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = AzureOpenAI(
  azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"), 
  azure_ad_token_provider=token_provider,
  api_version="2024-10-21"
)


class CalendarEvent(BaseModel):
    name: str
    date: str
    participants: list[str]

completion = client.beta.chat.completions.parse(
    model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
    messages=[
        {"role": "system", "content": "Extract the event information."},
        {"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
    ],
    response_format=CalendarEvent,
)

event = completion.choices[0].message.parsed

print(event)
print(completion.model_dump_json(indent=2))

输出

name='Science Fair' date='Friday' participants=['Alice', 'Bob']
{
  "id": "chatcmpl-A1EUP2fAmL4SeB1lVMinwM7I2vcqG",
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null,
      "message": {
        "content": "{\n  \"name\": \"Science Fair\",\n  \"date\": \"Friday\",\n  \"participants\": [\"Alice\", \"Bob\"]\n}",
        "refusal": null,
        "role": "assistant",
        "function_call": null,
        "tool_calls": [],
        "parsed": {
          "name": "Science Fair",
          "date": "Friday",
          "participants": [
            "Alice",
            "Bob"
          ]
        }
      }
    }
  ],
  "created": 1724857389,
  "model": "gpt-4o-2024-08-06",
  "object": "chat.completion",
  "service_tier": null,
  "system_fingerprint": "fp_1c2eaec9fe",
  "usage": {
    "completion_tokens": 27,
    "prompt_tokens": 32,
    "total_tokens": 59
  }
}

使用结构化输出进行函数调用

可以通过一个参数来启用函数调用的结构化输出,方法是提供 strict: true

注意

并行函数调用不支持结构化输出。 使用结构化输出时,将 parallel_tool_calls 设置为 false

from enum import Enum
from typing import Union
from pydantic import BaseModel
import openai
from openai import AzureOpenAI

client = AzureOpenAI(
  azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"), 
  api_key=os.getenv("AZURE_OPENAI_API_KEY"),  
  api_version="2024-10-21"
)


class GetDeliveryDate(BaseModel):
    order_id: str

tools = [openai.pydantic_function_tool(GetDeliveryDate)]

messages = []
messages.append({"role": "system", "content": "You are a helpful customer support assistant. Use the supplied tools to assist the user."})
messages.append({"role": "user", "content": "Hi, can you tell me the delivery date for my order #12345?"}) 

response = client.chat.completions.create(
    model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
    messages=messages,
    tools=tools
)

print(response.choices[0].message.tool_calls[0].function)
print(response.model_dump_json(indent=2))

入门

将以下包添加到项目以用于 Azure OpenAI:

dotnet add package Azure.AI.OpenAI --prerelease
dotnet add package Azure.Identity
dotnet add package Newtonsoft.Json.Schema

如果对使用 Microsoft Entra ID 进行身份验证不熟悉,请参阅如何使用 Microsoft Entra ID 身份验证配置 Azure OpenAI 服务

using Azure.AI.OpenAI;
using Azure.Identity;
using Newtonsoft.Json.Schema.Generation;
using OpenAI.Chat;
using System.ClientModel;

// Create the clients
string endpoint = GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");

AzureOpenAIClient openAIClient = new(
    new Uri(endpoint),
    new DefaultAzureCredential());

var client = openAIClient.GetChatClient("gpt-4o");

// Create a chat with initial prompts
var chat = new List<ChatMessage>()
    {
         new SystemChatMessage("Extract the event information and projected weather."),
         new UserChatMessage("Alice and Bob are going to a science fair in Seattle on June 1st, 2025.")
    };

// Get the schema of the class for the structured response
JSchemaGenerator generator = new JSchemaGenerator();
var jsonSchema = generator.Generate(typeof(CalendarEvent)).ToString();

// Get a completion with structured output
var chatUpdates = client.CompleteChatStreamingAsync(
        chat,
        new ChatCompletionOptions()
        {
            ResponseFormat = ChatResponseFormat.CreateJsonSchemaFormat(
                        "calenderEvent",
                        BinaryData.FromString(jsonSchema))
        });

// Write the structured response
await foreach (var chatUpdate in chatUpdates)
{
    foreach (var contentPart in chatUpdate.ContentUpdate)
    {
        Console.Write(contentPart.Text);
    }
}

// The class for the structured response
public class CalendarEvent()
{
    public string Name { get; set; }
    public string Date { get; set; }
    public List<string> Participants { get; set; }
}

使用结构化输出进行函数调用

可以通过一个参数来启用函数调用的结构化输出,方法是提供 strict: true

using Azure.AI.OpenAI;
using Newtonsoft.Json.Schema.Generation;
using OpenAI.Chat;
using System.ClientModel;

// Create the clients
string endpoint = GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");

AzureOpenAIClient openAIClient = new(
    new Uri(endpoint),
    new DefaultAzureCredential());

var chatClient = openAIClient.GetChatClient("gpt-4o");

// Local function to be used by the assistant tooling
string GetTemperature(string location, string date)
{
    // Placeholder for Weather API
    if(location == "Seattle" && date == "2025-06-01")
    {
        return "75";
    }

    return "50";
}

// Create a tool to get the temperature
ChatTool GetTemperatureTool = ChatTool.CreateFunctionTool(
    functionName: nameof(GetTemperature),
    functionSchemaIsStrict: true,
    functionDescription: "Get the projected temperature by date and location.",
    functionParameters: BinaryData.FromBytes("""
        {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The location of the weather."
                },
                "date": {
                    "type": "string",
                    "description": "The date of the projected weather."
                }
            },
            "required": ["location", "date"],
            "additionalProperties": false  
        }
        """u8.ToArray())
);

// Create a chat with prompts
var chat = new List<ChatMessage>()
    {
         new SystemChatMessage("Extract the event information and projected weather."),
         new UserChatMessage("Alice and Bob are going to a science fair in Seattle on June 1st, 2025.")
    };

// Create a JSON schema for the CalendarEvent structured response
JSchemaGenerator generator = new JSchemaGenerator();
var jsonSchema = generator.Generate(typeof(CalendarEvent)).ToString();

// Get a chat completion from the AI model
var completion = chatClient.CompleteChat(
        chat,
        new ChatCompletionOptions()
        {
            ResponseFormat = ChatResponseFormat.CreateJsonSchemaFormat(
                "calenderEvent",
                BinaryData.FromString(jsonSchema)),
            Tools = { GetTemperatureTool }
        });

Console.WriteLine(completion.Value.ToolCalls[0].FunctionName);

// Structured response class
public class CalendarEvent()
{
    public string Name { get; set; }
    public string Date { get; set; }
    public string Temperature { get; set; }
    public List<string> Participants { get; set; }
}

入门

response_format 设置为 json_schema 并设置了 strict: true

curl -X POST  https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_MODEL_DEPLOYMENT_NAME/chat/completions?api-version=2024-10-21 \
  -H "api-key: $AZURE_OPENAI_API_KEY" \
  -H "Content-Type: application/json" \
    -d '{
        "messages": [
                {"role": "system", "content": "Extract the event information."},
                {"role": "user", "content": "Alice and Bob are going to a science fair on Friday."}
            ],
            "response_format": {
                "type": "json_schema",
                "json_schema": {
                    "name": "CalendarEventResponse",
                    "strict": true,
                    "schema": {
                        "type": "object",
                        "properties": {
                            "name": {
                              "type": "string"
                            },
                            "date": {
                                "type": "string"
                            },
                            "participants": {
                                "type": "array",
                                "items": {
                                    "type": "string"
                                }
                            }
                        },
                        "required": [
                            "name",
                            "date",
                            "participants"
                        ],
                        "additionalProperties": false
                    }
                }
          }
  }'

输出:

{
  "id": "chatcmpl-A1HKsHAe2hH9MEooYslRn9UmEwsag",
  "object": "chat.completion",
  "created": 1724868330,
  "model": "gpt-4o-2024-08-06",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "{\n  \"name\": \"Science Fair\",\n  \"date\": \"Friday\",\n  \"participants\": [\"Alice\", \"Bob\"]\n}"
      },
      "logprobs": null,
      "finish_reason": "stop"
    }
  ],
  "usage": {
    "prompt_tokens": 33,
    "completion_tokens": 27,
    "total_tokens": 60
  },
  "system_fingerprint": "fp_1c2eaec9fe"
}

使用结构化输出进行函数调用

curl -X POST  https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_MODEL_DEPLOYMENT_NAME/chat/completions?api-version=2024-10-21 \
  -H "api-key: $AZURE_OPENAI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
  "messages": [
    {
      "role": "system",
      "content": "You are a helpful assistant. The current date is August 6, 2024. You help users query for the data they are looking for by calling the query function."
    },
    {
      "role": "user",
      "content": "look up all my orders in may of last year that were fulfilled but not delivered on time"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "query",
        "description": "Execute a query.",
        "strict": true,
        "parameters": {
          "type": "object",
          "properties": {
            "table_name": {
              "type": "string",
              "enum": ["orders"]
            },
            "columns": {
              "type": "array",
              "items": {
                "type": "string",
                "enum": [
                  "id",
                  "status",
                  "expected_delivery_date",
                  "delivered_at",
                  "shipped_at",
                  "ordered_at",
                  "canceled_at"
                ]
              }
            },
            "conditions": {
              "type": "array",
              "items": {
                "type": "object",
                "properties": {
                  "column": {
                    "type": "string"
                  },
                  "operator": {
                    "type": "string",
                    "enum": ["=", ">", "<", ">=", "<=", "!="]
                  },
                  "value": {
                    "anyOf": [
                      {
                        "type": "string"
                      },
                      {
                        "type": "number"
                      },
                      {
                        "type": "object",
                        "properties": {
                          "column_name": {
                            "type": "string"
                          }
                        },
                        "required": ["column_name"],
                        "additionalProperties": false
                      }
                    ]
                  }
                },
                "required": ["column", "operator", "value"],
                "additionalProperties": false
              }
            },
            "order_by": {
              "type": "string",
              "enum": ["asc", "desc"]
            }
          },
          "required": ["table_name", "columns", "conditions", "order_by"],
          "additionalProperties": false
        }
      }
    }
  ]
}'

支持的架构和限制

Azure OpenAI 结构化输出支持与 OpenAI 相同的 JSON 架构子集。

支持的类型

  • 字符串
  • Number
  • 布尔
  • Integer
  • Object
  • 数组
  • Enum
  • anyOf

注意

根对象不能是 anyOf 类型。

所有字段都必须是必填的

必须根据需要包含所有字段或函数参数。 在下面的示例中,locationunit 都在 "required": ["location", "unit"] 下指定。

{
    "name": "get_weather",
    "description": "Fetches the weather in the given location",
    "strict": true,
    "parameters": {
        "type": "object",
        "properties": {
            "location": {
                "type": "string",
                "description": "The location to get the weather for"
            },
            "unit": {
                "type": "string",
                "description": "The unit to return the temperature in",
                "enum": ["F", "C"]
            }
        },
        "additionalProperties": false,
        "required": ["location", "unit"]
    }

如果需要,可以通过将联合类型与 null 一起使用来模拟可选参数。 在此示例中,这是通过 "type": ["string", "null"], 行实现的。

{
    "name": "get_weather",
    "description": "Fetches the weather in the given location",
    "strict": true,
    "parameters": {
        "type": "object",
        "properties": {
            "location": {
                "type": "string",
                "description": "The location to get the weather for"
            },
            "unit": {
                "type": ["string", "null"],
                "description": "The unit to return the temperature in",
                "enum": ["F", "C"]
            }
        },
        "additionalProperties": false,
        "required": [
            "location", "unit"
        ]
    }
}

嵌套深度

一个架构总共最多可以有 100 个对象属性,最多五个嵌套级别

additionalProperties: false 必须始终在对象中设置

此属性控制对象是否可以具有 JSON 架构中未定义的附加键值对。 若要使用结构化输出,必须将此值设置为 false。

键排序

结构化输出的排序方式与提供的架构相同。 若要更改输出顺序,请修改你在推理请求中发送的架构的顺序。

不支持的特定于类型的关键字

类型 不支持的关键字
字符串 minlength
maxLength
pattern
format
Number 最小值
最大值
multipleOf
对象 patternProperties
unevaluatedProperties
propertyNames
minProperties
maxProperties
阵 列 unevaluatedItems
contains
minContains
maxContains
minItems
maxItems
uniqueItems

使用 anyOf 的嵌套架构必须遵循整个 JSON 架构子集

支持的 anyOf 架构示例:

{
    "type": "object",
    "properties": {
        "item": {
            "anyOf": [
                {
                    "type": "object",
                    "description": "The user object to insert into the database",
                    "properties": {
                        "name": {
                            "type": "string",
                            "description": "The name of the user"
                        },
                        "age": {
                            "type": "number",
                            "description": "The age of the user"
                        }
                    },
                    "additionalProperties": false,
                    "required": [
                        "name",
                        "age"
                    ]
                },
                {
                    "type": "object",
                    "description": "The address object to insert into the database",
                    "properties": {
                        "number": {
                            "type": "string",
                            "description": "The number of the address. Eg. for 123 main st, this would be 123"
                        },
                        "street": {
                            "type": "string",
                            "description": "The street name. Eg. for 123 main st, this would be main st"
                        },
                        "city": {
                            "type": "string",
                            "description": "The city of the address"
                        }
                    },
                    "additionalProperties": false,
                    "required": [
                        "number",
                        "street",
                        "city"
                    ]
                }
            ]
        }
    },
    "additionalProperties": false,
    "required": [
        "item"
    ]
}

支持定义

支持的示例:

{
    "type": "object",
    "properties": {
        "steps": {
            "type": "array",
            "items": {
                "$ref": "#/$defs/step"
            }
        },
        "final_answer": {
            "type": "string"
        }
    },
    "$defs": {
        "step": {
            "type": "object",
            "properties": {
                "explanation": {
                    "type": "string"
                },
                "output": {
                    "type": "string"
                }
            },
            "required": [
                "explanation",
                "output"
            ],
            "additionalProperties": false
        }
    },
    "required": [
        "steps",
        "final_answer"
    ],
    "additionalProperties": false
}

支持递归架构

对根递归使用 # 的示例:

{
        "name": "ui",
        "description": "Dynamically generated UI",
        "strict": true,
        "schema": {
            "type": "object",
            "properties": {
                "type": {
                    "type": "string",
                    "description": "The type of the UI component",
                    "enum": ["div", "button", "header", "section", "field", "form"]
                },
                "label": {
                    "type": "string",
                    "description": "The label of the UI component, used for buttons or form fields"
                },
                "children": {
                    "type": "array",
                    "description": "Nested UI components",
                    "items": {
                        "$ref": "#"
                    }
                },
                "attributes": {
                    "type": "array",
                    "description": "Arbitrary attributes for the UI component, suitable for any element",
                    "items": {
                        "type": "object",
                        "properties": {
                            "name": {
                                "type": "string",
                                "description": "The name of the attribute, for example onClick or className"
                            },
                            "value": {
                                "type": "string",
                                "description": "The value of the attribute"
                            }
                        },
                      "additionalProperties": false,
                      "required": ["name", "value"]
                    }
                }
            },
            "required": ["type", "label", "children", "attributes"],
            "additionalProperties": false
        }
    }

显式递归的示例:

{
    "type": "object",
    "properties": {
        "linked_list": {
            "$ref": "#/$defs/linked_list_node"
        }
    },
    "$defs": {
        "linked_list_node": {
            "type": "object",
            "properties": {
                "value": {
                    "type": "number"
                },
                "next": {
                    "anyOf": [
                        {
                            "$ref": "#/$defs/linked_list_node"
                        },
                        {
                            "type": "null"
                        }
                    ]
                }
            },
            "additionalProperties": false,
            "required": [
                "next",
                "value"
            ]
        }
    },
    "additionalProperties": false,
    "required": [
        "linked_list"
    ]
}