你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn

如何训练自定义情绪分析模型

若要训练模型,请启动训练作业。 只有已成功完成的作业才能创建可用模型。 训练作业在七天后过期。 在此时间段之后,将无法检索作业详细信息。 如果成功完成训练作业并创建了模型,则作业过期不会影响该模型。 你在同一时间只能有一个训练作业处于运行状态,并且无法在同一项目中启动其他作业。

处理少量文档时,训练时间可从几分钟到几小时不等,具体取决于数据集大小和架构的复杂性。

先决条件

在训练模型之前,需要:

数据拆分

开始训练过程之前,项目中标记的文档会划分为训练集和测试集。 其中的每一个都有不同的功能。 训练集用于训练模型,这是模型从中学习分配给每个文档的类的集合。 测试集是一个盲集,它不是在训练期间引入到模型的,而是在评估期间引入的。 成功训练模型后,它将用于根据测试集中的文档进行预测。 根据这些预测,将会计算模型的评估指标。 建议确保所有类在训练集和测试集中均已充分表示。

自定义情绪分析支持两种数据拆分方法:

  • 自动从训练数据拆分测试集:系统将根据所选百分比将标记的数据拆分为训练集和测试集。 系统会尝试表示训练集中的所有类。 建议的拆分百分比为 80% 用于训练,20% 用于测试。

注意

如果选择“自动从训练数据拆分测试集”选项,则只有分配给训练集的数据会按照提供的百分比拆分。

  • 使用手动拆分训练和测试数据:此方法使用户能够定义标记的文档应分别属于哪个集合。

定型模型

若要在 Language Studio 中开始训练模型,请执行以下操作:

  1. 在左侧菜单中,选择“训练作业”。

  2. 从顶部菜单中选择“启动训练作业”。

  3. 然后选择“训练新模型”并在文本框中键入模型名称。 还可以通过选择“覆盖现有模型”选项并从下拉菜单中选择要覆盖的模型来覆盖现有模型。 覆盖已训练的模型是不可逆的,但这在部署新模型之前不会影响已部署的模型。

    新建训练作业

  4. 默认情况下,系统会根据指定的百分比在训练集和测试集之间拆分标记的数据。 如果测试集中包含文档,则可以手动拆分训练数据和测试数据。

  5. 选择“训练”按钮。

  6. 如果从列表中选择训练作业 ID,则会显示一个侧窗格,可在其中检查此作业的“训练进度”、“作业状态”和其他详细信息。

    注意

    • 只有成功完成的训练作业才会生成模型。
    • 训练可能需要几分钟到几个小时,具体取决于已标记数据的大小。
    • 一次只能运行一个训练作业。 在运行的作业完成之前,无法在同一项目中启动其他训练作业。

取消训练作业

若要在 Language Studio 中取消训练作业,请转到“训练作业”页。 选择要取消的训练作业,然后选择顶部菜单中的“取消”。

后续步骤

完成训练后,将能够查看模型的性能,并可以根据需要选择改进模型。 对模型感到满意后,可以部署模型,使其可供使用。