你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn。
教程:运行以 Python 编写的 TensorFlow 模型
本教程介绍如何在本地使用导出的 TensorFlow 模型对图像进行分类。
注意
本教程仅适用于从“常规(压缩)”图像分类项目导出的模型。 如果你导出了其他模型,请访问我们的示例代码存储库。
先决条件
- 安装 Python 2.7 或更高版本,或安装 Python 3.6 或更高版本。
- 安装 pip。
接下来,需要安装以下包:
pip install tensorflow
pip install pillow
pip install numpy
pip install opencv-python
加载模型和标记
导出步骤下载的 .zip 文件包含 model.pb 和 labels.txt 文件。 这些文件表示定型模型和分类标签。 第一步是将模型加载到项目。 将以下代码添加到新的 Python 脚本。
import tensorflow as tf
import os
graph_def = tf.compat.v1.GraphDef()
labels = []
# These are set to the default names from exported models, update as needed.
filename = "model.pb"
labels_filename = "labels.txt"
# Import the TF graph
with tf.io.gfile.GFile(filename, 'rb') as f:
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
# Create a list of labels.
with open(labels_filename, 'rt') as lf:
for l in lf:
labels.append(l.strip())
为预测准备图像
你需要执行几个步骤来准备要预测的图像。 这些步骤模拟在训练过程中执行的图像处理。
打开文件并在 BGR 颜色空间中创建图像
from PIL import Image import numpy as np import cv2 # Load from a file imageFile = "<path to your image file>" image = Image.open(imageFile) # Update orientation based on EXIF tags, if the file has orientation info. image = update_orientation(image) # Convert to OpenCV format image = convert_to_opencv(image)
如果图像的维度大于 1600 像素,请调用此方法(稍后定义)。
image = resize_down_to_1600_max_dim(image)
裁剪最大的中心方形
h, w = image.shape[:2] min_dim = min(w,h) max_square_image = crop_center(image, min_dim, min_dim)
将方形大小调整为 256x256
augmented_image = resize_to_256_square(max_square_image)
裁剪模型特定输入大小的中心
# Get the input size of the model with tf.compat.v1.Session() as sess: input_tensor_shape = sess.graph.get_tensor_by_name('Placeholder:0').shape.as_list() network_input_size = input_tensor_shape[1] # Crop the center for the specified network_input_Size augmented_image = crop_center(augmented_image, network_input_size, network_input_size)
使用 helper 函数。 上面的步骤使用以下 helper 函数:
def convert_to_opencv(image): # RGB -> BGR conversion is performed as well. image = image.convert('RGB') r,g,b = np.array(image).T opencv_image = np.array([b,g,r]).transpose() return opencv_image def crop_center(img,cropx,cropy): h, w = img.shape[:2] startx = w//2-(cropx//2) starty = h//2-(cropy//2) return img[starty:starty+cropy, startx:startx+cropx] def resize_down_to_1600_max_dim(image): h, w = image.shape[:2] if (h < 1600 and w < 1600): return image new_size = (1600 * w // h, 1600) if (h > w) else (1600, 1600 * h // w) return cv2.resize(image, new_size, interpolation = cv2.INTER_LINEAR) def resize_to_256_square(image): h, w = image.shape[:2] return cv2.resize(image, (256, 256), interpolation = cv2.INTER_LINEAR) def update_orientation(image): exif_orientation_tag = 0x0112 if hasattr(image, '_getexif'): exif = image._getexif() if (exif != None and exif_orientation_tag in exif): orientation = exif.get(exif_orientation_tag, 1) # orientation is 1 based, shift to zero based and flip/transpose based on 0-based values orientation -= 1 if orientation >= 4: image = image.transpose(Image.TRANSPOSE) if orientation == 2 or orientation == 3 or orientation == 6 or orientation == 7: image = image.transpose(Image.FLIP_TOP_BOTTOM) if orientation == 1 or orientation == 2 or orientation == 5 or orientation == 6: image = image.transpose(Image.FLIP_LEFT_RIGHT) return image
对图像进行分类
一旦图像已作为 tensor 准备就绪,便可以通过模型发送它以进行预测。
# These names are part of the model and cannot be changed.
output_layer = 'loss:0'
input_node = 'Placeholder:0'
with tf.compat.v1.Session() as sess:
try:
prob_tensor = sess.graph.get_tensor_by_name(output_layer)
predictions = sess.run(prob_tensor, {input_node: [augmented_image] })
except KeyError:
print ("Couldn't find classification output layer: " + output_layer + ".")
print ("Verify this a model exported from an Object Detection project.")
exit(-1)
显示结果
然后,通过模型运行的图像 tensor 的结果将需要映射回标签。
# Print the highest probability label
highest_probability_index = np.argmax(predictions)
print('Classified as: ' + labels[highest_probability_index])
print()
# Or you can print out all of the results mapping labels to probabilities.
label_index = 0
for p in predictions:
truncated_probablity = np.float64(np.round(p,8))
print (labels[label_index], truncated_probablity)
label_index += 1
后续步骤
接下来,了解如何将模型包装到移动应用程序中: