MonitorDefinition Class
Monitor definition
Constructor
MonitorDefinition(*, compute: ServerlessSparkCompute, monitoring_target: MonitoringTarget | None = None, monitoring_signals: Dict[str, DataDriftSignal | DataQualitySignal | PredictionDriftSignal | FeatureAttributionDriftSignal | CustomMonitoringSignal | GenerationSafetyQualitySignal | GenerationTokenStatisticsSignal] = None, alert_notification: Literal['azmonitoring'] | AlertNotification | None = None)
Keyword-Only Parameters
Name | Description |
---|---|
compute
|
The Spark resource configuration to be associated with the monitor |
monitoring_target
|
The ARM ID object associated with the model or deployment that is being monitored. |
monitoring_signals
|
Optional[Dict[str, Union[DataDriftSignal , DataQualitySignal, PredictionDriftSignal , FeatureAttributionDriftSignal , CustomMonitoringSignal , GenerationSafetyQualitySignal , GenerationTokenStatisticsSignal , ModelPerformanceSignal]]]
The dictionary of signals to monitor. The key is the name of the signal and the value is the DataSignal object. Accepted values for the DataSignal objects are DataDriftSignal, DataQualitySignal, PredictionDriftSignal, FeatureAttributionDriftSignal, and CustomMonitoringSignal. |
alert_notification
|
The alert configuration for the monitor. |
Examples
Creating Monitor definition.
from azure.ai.ml.entities import (
AlertNotification,
MonitorDefinition,
MonitoringTarget,
SparkResourceConfiguration,
)
monitor_definition = MonitorDefinition(
compute=SparkResourceConfiguration(instance_type="standard_e4s_v3", runtime_version="3.3"),
monitoring_target=MonitoringTarget(
ml_task="Classification",
endpoint_deployment_id="azureml:fraud_detection_endpoint:fraud_detection_deployment",
),
alert_notification=AlertNotification(emails=["abc@example.com", "def@example.com"]),
)
Samarbeta med oss på GitHub
Källan för det här innehållet finns på GitHub, där du även kan skapa och granska ärenden och pull-begäranden. Se vår deltagarguide för mer information.
Azure SDK for Python