Dela via


Fullständig funktionsreferens för BrainScript

Det här avsnittet innehåller information om inbyggda Funktioner i BrainScript.

Deklarationerna för alla inbyggda funktioner finns i CNTK.core.bs som finns bredvid CNTK-binärfilen.

De primitiva åtgärderna och lagren deklareras i det globala namnområdet. Ytterligare åtgärder deklareras i namnområden och ges med respektive prefix (t.ex. BS.RNN.LSTMP).

Lager

Lagerbyggnad

Aktiveringsfunktioner

Elementwise-åtgärder, unary

Elementwise-åtgärder, binärt

Elementwise-åtgärder, ternary

Matrisprodukt- och convolution-åtgärder

  • Times(A, B, outputRank=1)
    A * B
  • TransposeTimes(A, B, outputRank=1)
  • Convolution(weights, x, kernelShape, mapDims=(0), stride=(1), sharing=(true), autoPadding=(true), lowerPadding=(0), upperPadding=(0), imageLayout='CHW', maxTempMemSizeInSamples=0)
  • Pooling(x, poolKind/*'max'|'average'*/, kernelShape, stride=(1), autoPadding=(true), lowerPadding=(0), upperPadding=(0), imageLayout='CHW')
  • ROIPooling(x, rois, roiOutputShape, spatialScale=1.0/16.0)

Lärbara parametrar och konstanter

  • ParameterTensor {shape, learningRateMultiplier=1.0, init='uniform'/*|gaussian*/, initValueScale=1.0, initValue=0.0, randomSeed=-1, initFromFilePath=''}
  • Constant {scalarValue, rows = 1, cols = 1}
  • BS.Constants.Zero, BS.Constants.One
    BS.Constants.True, BS.Constants.False, BS.Constants.None
  • BS.Constants.OnesTensor (shape)
  • BS.Constants.ZeroSequenceLike (x)

Ingångar

  • Input (shape, dynamicAxis='', sparse=false, tag='feature')
  • DynamicAxis{}
  • EnvironmentInput (propertyName)
    Mean (x), InvStdDev (x)

Förlustfunktioner och mått

Minskningar

Träningsåtgärder

  • BatchNormalization (input, scale, bias, runMean, runInvStdDev, spatial, normalizationTimeConstant = 0, blendTimeConstant = 0, epsilon = 0.00001, useCntkEngine = true, imageLayout='CHW')
  • Dropout (x)
  • Stabilize (x, enabled=true)
    StabilizeElements (x, inputDim=x.dim, enabled=true)
  • CosDistanceWithNegativeSamples (x, y, numShifts, numNegSamples)

Omforma åtgärder

  • CNTK2.Reshape (x, shape, beginAxis=0, endAxis=0)
    ReshapeDimension (x, axis, shape) = CNTK2.Reshape (x, shape, beginAxis=axis, endAxis=axis + 1)
    FlattenDimensions (x, axis, num) = CNTK2.Reshape (x, 0, beginAxis=axis, endAxis=axis + num)
    SplitDimension (x, axis, N) = ReshapeDimension (x, axis, 0:N)
  • Slice (beginIndex, endIndex, input, axis=1)
    BS.Sequences.First (x) = Slice (0, 1, x, axis=-1)
    BS.Sequences.Last (x) = Slice (-1, 0, x, axis=-1)
  • Splice (inputs, axis=1)
  • TransposeDimensions (x, axis1, axis2)
    Transpose (x) = TransposeDimensions (x, 1, 2)
  • BS.Sequences.BroadcastSequenceAs (type, data1)
  • BS.Sequences.Gather (where, x)
    BS.Sequences.Scatter (where, y)
    BS.Sequences.IsFirst (x)
    BS.Sequences.IsLast (x)

Återkommande

  • OptimizedRNNStack(weights, input, hiddenDims, numLayers=1, bidirectional=false, recurrentOp='lstm')
  • BS.Loop.Previous (x, timeStep=1, defaultHiddenActivation=0)
    PastValue (shape, x, defaultHiddenActivation=0.1, ...) = BS.Loop.Previous (0, shape, ...)
  • BS.Loop.Next (x, timeStep=1, defaultHiddenActivation=0)
    FutureValue (shape, x, defaultHiddenActivation=0.1, ...) = BS.Loop.Next (0, shape, ...)
  • LSTMP (outputDim, cellDim=outputDim, x, inputDim=x.shape, aux=BS.Constants.None, auxDim=aux.shape, prevState, enableSelfStabilization=false)
  • BS.Boolean.Toggle (clk, initialValue=BS.Constants.False)
  • BS.RNNs.RecurrentLSTMP (outputDim, cellDim=outputDim, x, inputDim=x.shape, previousHook=BS.RNNs.PreviousHC, augmentInputHook=NoAuxInputHook, augmentInputDim=0, layerIndex=0, enableSelfStabilization=false)
  • BS.RNNs.RecurrentLSTMPStack (layerShapes, cellDims=layerShapes, input, inputShape=input.shape, previousHook=PreviousHC, augmentInputHook=NoAuxInputHook, augmentInputShape=0, enableSelfStabilization=false)
  • BS.RNNs.RecurrentBirectionalLSTMPStack (layerShapes, cellDims=layerShapes, input, inputShape=input.dim, previousHook=PreviousHC, nextHook=NextHC, enableSelfStabilization=false)

Stöd för sekvens-till-sekvens

  • BS.Seq2Seq.CreateAugmentWithFixedWindowAttentionHook (attentionDim, attentionSpan, decoderDynamicAxis, encoderOutput, enableSelfStabilization=false)
  • BS.Seq2Seq.GreedySequenceDecoderFrom (modelAsTrained)
  • BS.Seq2Seq.BeamSearchSequenceDecoderFrom (modelAsTrained, beamDepth)

Specialåtgärder

  • ClassBasedCrossEntropyWithSoftmax (labelClassDescriptorVectorSequence, mainInputInfo, mainWeight, classLogProbsBeforeSoftmax)

Modellredigering

Annan

  • Fail (what)
  • IsSameObject (a, b)
  • Trace (node, say='', logFrequency=traceFrequency, logFirst=10, logGradientToo=false, onlyUpToRow=100000000, onlyUpToT=100000000, format=[])

Deprecated

  • ErrorPrediction (labels, nonNormalizedLogClassPosteriors)
  • ColumnElementTimes (...) = ElementTimes (...)
  • DiagTimes (...) = ElementTimes (...)
  • LearnableParameter(...) = Parameter(...)
  • LookupTable (embeddingMatrix, inputTensor)
  • RowRepeat (input, numRepeats)
  • RowSlice (beginIndex, numRows, input) = Slice(beginIndex, beginIndex + numRows, input, axis = 1)
  • RowStack (inputs)
  • RowElementTimes (...) = ElementTimes (...)
  • Scale (...) = ElementTimes (...)
  • ConstantTensor (scalarVal, shape)
    Parameter (outputDim, inputDim, ...) = ParameterTensor ((outputDim:input), ...)
    WeightParam (outputDim, inputDim) = Parameter (outputDim, inputDim, init='uniform', initValueScale=1, initOnCPUOnly=true, randomSeed=1)
    DiagWeightParam (outputDim) = ParameterTensor ((outputDim), init='uniform', initValueScale=1, initOnCPUOnly=true, randomSeed=1)
    BiasParam (dim) = ParameterTensor ((dim), init='fixedValue', value=0.0)
    ScalarParam() = BiasParam (1)
  • SparseInput (shape, dynamicAxis='', tag='feature')
    ImageInput (imageWidth, imageHeight, imageChannels, imageLayout='CHW', dynamicAxis='', tag='feature')
    SparseImageInput (imageWidth, imageHeight, imageChannels, imageLayout='CHW', dynamicAxis='', tag='feature')
  • MeanVarNorm(feat) = PerDimMeanVarNormalization(feat, Mean (feat), InvStdDev (feat))
    PerDimMeanVarNormalization (x, mean, invStdDev),
    PerDimMeanVarDeNormalization (x, mean, invStdDev)
  • ReconcileDynamicAxis (dataInput, layoutInput)