RankingCatalog.CrossValidate Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Run cross-validation over numberOfFolds
folds of data
, by fitting estimator
,
and respecting rowGroupColumnName
if provided.
Then evaluate each sub-model against labelColumnName
and return metrics.
public System.Collections.Generic.IReadOnlyList<Microsoft.ML.TrainCatalogBase.CrossValidationResult<Microsoft.ML.Data.RankingMetrics>> CrossValidate (Microsoft.ML.IDataView data, Microsoft.ML.IEstimator<Microsoft.ML.ITransformer> estimator, int numberOfFolds = 5, string labelColumnName = "Label", string rowGroupColumnName = "GroupId", int? seed = default);
member this.CrossValidate : Microsoft.ML.IDataView * Microsoft.ML.IEstimator<Microsoft.ML.ITransformer> * int * string * string * Nullable<int> -> System.Collections.Generic.IReadOnlyList<Microsoft.ML.TrainCatalogBase.CrossValidationResult<Microsoft.ML.Data.RankingMetrics>>
Public Function CrossValidate (data As IDataView, estimator As IEstimator(Of ITransformer), Optional numberOfFolds As Integer = 5, Optional labelColumnName As String = "Label", Optional rowGroupColumnName As String = "GroupId", Optional seed As Nullable(Of Integer) = Nothing) As IReadOnlyList(Of TrainCatalogBase.CrossValidationResult(Of RankingMetrics))
Parameters
- data
- IDataView
The data to run cross-validation on.
- estimator
- IEstimator<ITransformer>
The estimator to fit.
- numberOfFolds
- Int32
Number of cross-validation folds.
- labelColumnName
- String
The label column (for evaluation).
- rowGroupColumnName
- String
The name of the groupId column in data
, which is used to group rows.
This column will automatically be used as SamplingKeyColumn when splitting the data for Cross Validation,
as this is required by the ranking algorithms
If null
no row grouping will be performed.
Seed for the random number generator used to select rows for cross-validation folds.
Returns
Per-fold results: metrics, models, scored datasets.