Dela via


Microsoft.MachineLearningServices-arbetsytor/scheman 2023-10-01

Bicep-resursdefinition

Resurstypen arbetsytor/scheman kan distribueras med åtgärder som mål:

En lista över ändrade egenskaper i varje API-version finns i ändringsloggen.

Resursformat

Om du vill skapa en Microsoft.MachineLearningServices/workspaces/schedules-resurs lägger du till följande Bicep i mallen.

resource symbolicname 'Microsoft.MachineLearningServices/workspaces/schedules@2023-10-01' = {
  name: 'string'
  parent: resourceSymbolicName
  properties: {
    action: {
      actionType: 'string'
      // For remaining properties, see ScheduleActionBase objects
    }
    description: 'string'
    displayName: 'string'
    isEnabled: bool
    properties: {
      {customized property}: 'string'
    }
    tags: {}
    trigger: {
      endTime: 'string'
      startTime: 'string'
      timeZone: 'string'
      triggerType: 'string'
      // For remaining properties, see TriggerBase objects
    }
  }
}

ScheduleActionBase-objekt

Ange egenskapen actionType för att ange typ av objekt.

För CreateJobanvänder du:

  actionType: 'CreateJob'
  jobDefinition: {
    componentId: 'string'
    computeId: 'string'
    description: 'string'
    displayName: 'string'
    experimentName: 'string'
    identity: {
      identityType: 'string'
      // For remaining properties, see IdentityConfiguration objects
    }
    isArchived: bool
    properties: {
      {customized property}: 'string'
    }
    services: {
      {customized property}: {
        endpoint: 'string'
        jobServiceType: 'string'
        nodes: {
          nodesValueType: 'string'
          // For remaining properties, see Nodes objects
        }
        port: int
        properties: {
          {customized property}: 'string'
        }
      }
    }
    tags: {}
    jobType: 'string'
    // For remaining properties, see JobBaseProperties objects
  }

För CreateMonitoranvänder du:

  actionType: 'CreateMonitor'
  monitorDefinition: {
    alertNotificationSettings: {
      emailNotificationSettings: {
        emails: [
          'string'
        ]
      }
    }
    computeConfiguration: {
      computeType: 'string'
      // For remaining properties, see MonitorComputeConfigurationBase objects
    }
    monitoringTarget: {
      deploymentId: 'string'
      modelId: 'string'
      taskType: 'string'
    }
    signals: {
      {customized property}: {
        notificationTypes: 'AmlNotification'
        properties: {
          {customized property}: 'string'
        }
        signalType: 'string'
        // For remaining properties, see MonitoringSignalBase objects
      }
    }
  }

För InvokeBatchEndpointanvänder du:

  actionType: 'InvokeBatchEndpoint'
  endpointInvocationDefinition: any()

JobBaseProperties-objekt

Ange egenskapen jobType för att ange typ av objekt.

För AutoML-använder du:

  jobType: 'AutoML'
  environmentId: 'string'
  environmentVariables: {
    {customized property}: 'string'
  }
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
  queueSettings: {
    jobTier: 'string'
  }
  resources: {
    dockerArgs: 'string'
    instanceCount: int
    instanceType: 'string'
    properties: {
      {customized property}: any()
    }
    shmSize: 'string'
  }
  taskDetails: {
    logVerbosity: 'string'
    targetColumnName: 'string'
    trainingData: {
      description: 'string'
      jobInputType: 'string'
      mode: 'string'
      uri: 'string'
    }
    taskType: 'string'
    // For remaining properties, see AutoMLVertical objects
  }

För Kommandoanvänder du:

  jobType: 'Command'
  codeId: 'string'
  command: 'string'
  distribution: {
    distributionType: 'string'
    // For remaining properties, see DistributionConfiguration objects
  }
  environmentId: 'string'
  environmentVariables: {
    {customized property}: 'string'
  }
  inputs: {
    {customized property}: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
  }
  limits: {
    jobLimitsType: 'string'
    timeout: 'string'
  }
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
  queueSettings: {
    jobTier: 'string'
  }
  resources: {
    dockerArgs: 'string'
    instanceCount: int
    instanceType: 'string'
    properties: {
      {customized property}: any()
    }
    shmSize: 'string'
  }

För Pipelineanvänder du:

  jobType: 'Pipeline'
  inputs: {
    {customized property}: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
  }
  jobs: {
    {customized property}: any()
  }
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
  settings: any()
  sourceJobId: 'string'

För Svepanvänder du:

  jobType: 'Sweep'
  earlyTermination: {
    delayEvaluation: int
    evaluationInterval: int
    policyType: 'string'
    // For remaining properties, see EarlyTerminationPolicy objects
  }
  inputs: {
    {customized property}: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
  }
  limits: {
    jobLimitsType: 'string'
    maxConcurrentTrials: int
    maxTotalTrials: int
    timeout: 'string'
    trialTimeout: 'string'
  }
  objective: {
    goal: 'string'
    primaryMetric: 'string'
  }
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
  queueSettings: {
    jobTier: 'string'
  }
  samplingAlgorithm: {
    samplingAlgorithmType: 'string'
    // For remaining properties, see SamplingAlgorithm objects
  }
  searchSpace: any()
  trial: {
    codeId: 'string'
    command: 'string'
    distribution: {
      distributionType: 'string'
      // For remaining properties, see DistributionConfiguration objects
    }
    environmentId: 'string'
    environmentVariables: {
      {customized property}: 'string'
    }
    resources: {
      dockerArgs: 'string'
      instanceCount: int
      instanceType: 'string'
      properties: {
        {customized property}: any()
      }
      shmSize: 'string'
    }
  }

IdentityConfiguration-objekt

Ange egenskapen identityType för att ange typ av objekt.

För AMLTokenanvänder du:

  identityType: 'AMLToken'

För Managedanvänder du:

  identityType: 'Managed'
  clientId: 'string'
  objectId: 'string'
  resourceId: 'string'

För UserIdentityanvänder du:

  identityType: 'UserIdentity'

Nodobjekt

Ange egenskapen nodesValueType för att ange typ av objekt.

För Allaanvänder du:

  nodesValueType: 'All'

JobOutput-objekt

Ange egenskapen jobOutputType för att ange typ av objekt.

För custom_modelanvänder du:

  jobOutputType: 'custom_model'
  mode: 'string'
  uri: 'string'

För mlflow_modelanvänder du:

  jobOutputType: 'mlflow_model'
  mode: 'string'
  uri: 'string'

För mltableanvänder du:

  jobOutputType: 'mltable'
  mode: 'string'
  uri: 'string'

För triton_modelanvänder du:

  jobOutputType: 'triton_model'
  mode: 'string'
  uri: 'string'

För uri_fileanvänder du:

  jobOutputType: 'uri_file'
  mode: 'string'
  uri: 'string'

För uri_folderanvänder du:

  jobOutputType: 'uri_folder'
  mode: 'string'
  uri: 'string'

AutoMLVertical-objekt

Ange egenskapen taskType för att ange typ av objekt.

För Klassificeringanvänder du:

  taskType: 'Classification'
  cvSplitColumnNames: [
    'string'
  ]
  featurizationSettings: {
    blockedTransformers: [
      'string'
    ]
    columnNameAndTypes: {
      {customized property}: 'string'
    }
    datasetLanguage: 'string'
    enableDnnFeaturization: bool
    mode: 'string'
    transformerParams: {
      {customized property}: [
        {
          fields: [
            'string'
          ]
          parameters: any()
        }
      ]
    }
  }
  limitSettings: {
    enableEarlyTermination: bool
    exitScore: int
    maxConcurrentTrials: int
    maxCoresPerTrial: int
    maxTrials: int
    timeout: 'string'
    trialTimeout: 'string'
  }
  nCrossValidations: {
    mode: 'string'
    // For remaining properties, see NCrossValidations objects
  }
  positiveLabel: 'string'
  primaryMetric: 'string'
  testData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }
  testDataSize: int
  trainingSettings: {
    allowedTrainingAlgorithms: [
      'string'
    ]
    blockedTrainingAlgorithms: [
      'string'
    ]
    enableDnnTraining: bool
    enableModelExplainability: bool
    enableOnnxCompatibleModels: bool
    enableStackEnsemble: bool
    enableVoteEnsemble: bool
    ensembleModelDownloadTimeout: 'string'
    stackEnsembleSettings: {
      stackMetaLearnerKWargs: any()
      stackMetaLearnerTrainPercentage: int
      stackMetaLearnerType: 'string'
    }
  }
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }
  validationDataSize: int
  weightColumnName: 'string'

För Prognostiseringanvänder du:

  taskType: 'Forecasting'
  cvSplitColumnNames: [
    'string'
  ]
  featurizationSettings: {
    blockedTransformers: [
      'string'
    ]
    columnNameAndTypes: {
      {customized property}: 'string'
    }
    datasetLanguage: 'string'
    enableDnnFeaturization: bool
    mode: 'string'
    transformerParams: {
      {customized property}: [
        {
          fields: [
            'string'
          ]
          parameters: any()
        }
      ]
    }
  }
  forecastingSettings: {
    countryOrRegionForHolidays: 'string'
    cvStepSize: int
    featureLags: 'string'
    forecastHorizon: {
      mode: 'string'
      // For remaining properties, see ForecastHorizon objects
    }
    frequency: 'string'
    seasonality: {
      mode: 'string'
      // For remaining properties, see Seasonality objects
    }
    shortSeriesHandlingConfig: 'string'
    targetAggregateFunction: 'string'
    targetLags: {
      mode: 'string'
      // For remaining properties, see TargetLags objects
    }
    targetRollingWindowSize: {
      mode: 'string'
      // For remaining properties, see TargetRollingWindowSize objects
    }
    timeColumnName: 'string'
    timeSeriesIdColumnNames: [
      'string'
    ]
    useStl: 'string'
  }
  limitSettings: {
    enableEarlyTermination: bool
    exitScore: int
    maxConcurrentTrials: int
    maxCoresPerTrial: int
    maxTrials: int
    timeout: 'string'
    trialTimeout: 'string'
  }
  nCrossValidations: {
    mode: 'string'
    // For remaining properties, see NCrossValidations objects
  }
  primaryMetric: 'string'
  testData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }
  testDataSize: int
  trainingSettings: {
    allowedTrainingAlgorithms: [
      'string'
    ]
    blockedTrainingAlgorithms: [
      'string'
    ]
    enableDnnTraining: bool
    enableModelExplainability: bool
    enableOnnxCompatibleModels: bool
    enableStackEnsemble: bool
    enableVoteEnsemble: bool
    ensembleModelDownloadTimeout: 'string'
    stackEnsembleSettings: {
      stackMetaLearnerKWargs: any()
      stackMetaLearnerTrainPercentage: int
      stackMetaLearnerType: 'string'
    }
  }
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }
  validationDataSize: int
  weightColumnName: 'string'

För ImageClassificationanvänder du:

  taskType: 'ImageClassification'
  limitSettings: {
    maxConcurrentTrials: int
    maxTrials: int
    timeout: 'string'
  }
  modelSettings: {
    advancedSettings: 'string'
    amsGradient: bool
    augmentations: 'string'
    beta1: int
    beta2: int
    checkpointFrequency: int
    checkpointModel: {
      description: 'string'
      jobInputType: 'string'
      mode: 'string'
      uri: 'string'
    }
    checkpointRunId: 'string'
    distributed: bool
    earlyStopping: bool
    earlyStoppingDelay: int
    earlyStoppingPatience: int
    enableOnnxNormalization: bool
    evaluationFrequency: int
    gradientAccumulationStep: int
    layersToFreeze: int
    learningRate: int
    learningRateScheduler: 'string'
    modelName: 'string'
    momentum: int
    nesterov: bool
    numberOfEpochs: int
    numberOfWorkers: int
    optimizer: 'string'
    randomSeed: int
    stepLRGamma: int
    stepLRStepSize: int
    trainingBatchSize: int
    trainingCropSize: int
    validationBatchSize: int
    validationCropSize: int
    validationResizeSize: int
    warmupCosineLRCycles: int
    warmupCosineLRWarmupEpochs: int
    weightDecay: int
    weightedLoss: int
  }
  primaryMetric: 'string'
  searchSpace: [
    {
      amsGradient: 'string'
      augmentations: 'string'
      beta1: 'string'
      beta2: 'string'
      distributed: 'string'
      earlyStopping: 'string'
      earlyStoppingDelay: 'string'
      earlyStoppingPatience: 'string'
      enableOnnxNormalization: 'string'
      evaluationFrequency: 'string'
      gradientAccumulationStep: 'string'
      layersToFreeze: 'string'
      learningRate: 'string'
      learningRateScheduler: 'string'
      modelName: 'string'
      momentum: 'string'
      nesterov: 'string'
      numberOfEpochs: 'string'
      numberOfWorkers: 'string'
      optimizer: 'string'
      randomSeed: 'string'
      stepLRGamma: 'string'
      stepLRStepSize: 'string'
      trainingBatchSize: 'string'
      trainingCropSize: 'string'
      validationBatchSize: 'string'
      validationCropSize: 'string'
      validationResizeSize: 'string'
      warmupCosineLRCycles: 'string'
      warmupCosineLRWarmupEpochs: 'string'
      weightDecay: 'string'
      weightedLoss: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }
  validationDataSize: int

För ImageClassificationMultilabelanvänder du:

  taskType: 'ImageClassificationMultilabel'
  limitSettings: {
    maxConcurrentTrials: int
    maxTrials: int
    timeout: 'string'
  }
  modelSettings: {
    advancedSettings: 'string'
    amsGradient: bool
    augmentations: 'string'
    beta1: int
    beta2: int
    checkpointFrequency: int
    checkpointModel: {
      description: 'string'
      jobInputType: 'string'
      mode: 'string'
      uri: 'string'
    }
    checkpointRunId: 'string'
    distributed: bool
    earlyStopping: bool
    earlyStoppingDelay: int
    earlyStoppingPatience: int
    enableOnnxNormalization: bool
    evaluationFrequency: int
    gradientAccumulationStep: int
    layersToFreeze: int
    learningRate: int
    learningRateScheduler: 'string'
    modelName: 'string'
    momentum: int
    nesterov: bool
    numberOfEpochs: int
    numberOfWorkers: int
    optimizer: 'string'
    randomSeed: int
    stepLRGamma: int
    stepLRStepSize: int
    trainingBatchSize: int
    trainingCropSize: int
    validationBatchSize: int
    validationCropSize: int
    validationResizeSize: int
    warmupCosineLRCycles: int
    warmupCosineLRWarmupEpochs: int
    weightDecay: int
    weightedLoss: int
  }
  primaryMetric: 'string'
  searchSpace: [
    {
      amsGradient: 'string'
      augmentations: 'string'
      beta1: 'string'
      beta2: 'string'
      distributed: 'string'
      earlyStopping: 'string'
      earlyStoppingDelay: 'string'
      earlyStoppingPatience: 'string'
      enableOnnxNormalization: 'string'
      evaluationFrequency: 'string'
      gradientAccumulationStep: 'string'
      layersToFreeze: 'string'
      learningRate: 'string'
      learningRateScheduler: 'string'
      modelName: 'string'
      momentum: 'string'
      nesterov: 'string'
      numberOfEpochs: 'string'
      numberOfWorkers: 'string'
      optimizer: 'string'
      randomSeed: 'string'
      stepLRGamma: 'string'
      stepLRStepSize: 'string'
      trainingBatchSize: 'string'
      trainingCropSize: 'string'
      validationBatchSize: 'string'
      validationCropSize: 'string'
      validationResizeSize: 'string'
      warmupCosineLRCycles: 'string'
      warmupCosineLRWarmupEpochs: 'string'
      weightDecay: 'string'
      weightedLoss: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }
  validationDataSize: int

För ImageInstanceSegmentationanvänder du:

  taskType: 'ImageInstanceSegmentation'
  limitSettings: {
    maxConcurrentTrials: int
    maxTrials: int
    timeout: 'string'
  }
  modelSettings: {
    advancedSettings: 'string'
    amsGradient: bool
    augmentations: 'string'
    beta1: int
    beta2: int
    boxDetectionsPerImage: int
    boxScoreThreshold: int
    checkpointFrequency: int
    checkpointModel: {
      description: 'string'
      jobInputType: 'string'
      mode: 'string'
      uri: 'string'
    }
    checkpointRunId: 'string'
    distributed: bool
    earlyStopping: bool
    earlyStoppingDelay: int
    earlyStoppingPatience: int
    enableOnnxNormalization: bool
    evaluationFrequency: int
    gradientAccumulationStep: int
    imageSize: int
    layersToFreeze: int
    learningRate: int
    learningRateScheduler: 'string'
    maxSize: int
    minSize: int
    modelName: 'string'
    modelSize: 'string'
    momentum: int
    multiScale: bool
    nesterov: bool
    nmsIouThreshold: int
    numberOfEpochs: int
    numberOfWorkers: int
    optimizer: 'string'
    randomSeed: int
    stepLRGamma: int
    stepLRStepSize: int
    tileGridSize: 'string'
    tileOverlapRatio: int
    tilePredictionsNmsThreshold: int
    trainingBatchSize: int
    validationBatchSize: int
    validationIouThreshold: int
    validationMetricType: 'string'
    warmupCosineLRCycles: int
    warmupCosineLRWarmupEpochs: int
    weightDecay: int
  }
  primaryMetric: 'MeanAveragePrecision'
  searchSpace: [
    {
      amsGradient: 'string'
      augmentations: 'string'
      beta1: 'string'
      beta2: 'string'
      boxDetectionsPerImage: 'string'
      boxScoreThreshold: 'string'
      distributed: 'string'
      earlyStopping: 'string'
      earlyStoppingDelay: 'string'
      earlyStoppingPatience: 'string'
      enableOnnxNormalization: 'string'
      evaluationFrequency: 'string'
      gradientAccumulationStep: 'string'
      imageSize: 'string'
      layersToFreeze: 'string'
      learningRate: 'string'
      learningRateScheduler: 'string'
      maxSize: 'string'
      minSize: 'string'
      modelName: 'string'
      modelSize: 'string'
      momentum: 'string'
      multiScale: 'string'
      nesterov: 'string'
      nmsIouThreshold: 'string'
      numberOfEpochs: 'string'
      numberOfWorkers: 'string'
      optimizer: 'string'
      randomSeed: 'string'
      stepLRGamma: 'string'
      stepLRStepSize: 'string'
      tileGridSize: 'string'
      tileOverlapRatio: 'string'
      tilePredictionsNmsThreshold: 'string'
      trainingBatchSize: 'string'
      validationBatchSize: 'string'
      validationIouThreshold: 'string'
      validationMetricType: 'string'
      warmupCosineLRCycles: 'string'
      warmupCosineLRWarmupEpochs: 'string'
      weightDecay: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }
  validationDataSize: int

För ImageObjectDetectionanvänder du:

  taskType: 'ImageObjectDetection'
  limitSettings: {
    maxConcurrentTrials: int
    maxTrials: int
    timeout: 'string'
  }
  modelSettings: {
    advancedSettings: 'string'
    amsGradient: bool
    augmentations: 'string'
    beta1: int
    beta2: int
    boxDetectionsPerImage: int
    boxScoreThreshold: int
    checkpointFrequency: int
    checkpointModel: {
      description: 'string'
      jobInputType: 'string'
      mode: 'string'
      uri: 'string'
    }
    checkpointRunId: 'string'
    distributed: bool
    earlyStopping: bool
    earlyStoppingDelay: int
    earlyStoppingPatience: int
    enableOnnxNormalization: bool
    evaluationFrequency: int
    gradientAccumulationStep: int
    imageSize: int
    layersToFreeze: int
    learningRate: int
    learningRateScheduler: 'string'
    maxSize: int
    minSize: int
    modelName: 'string'
    modelSize: 'string'
    momentum: int
    multiScale: bool
    nesterov: bool
    nmsIouThreshold: int
    numberOfEpochs: int
    numberOfWorkers: int
    optimizer: 'string'
    randomSeed: int
    stepLRGamma: int
    stepLRStepSize: int
    tileGridSize: 'string'
    tileOverlapRatio: int
    tilePredictionsNmsThreshold: int
    trainingBatchSize: int
    validationBatchSize: int
    validationIouThreshold: int
    validationMetricType: 'string'
    warmupCosineLRCycles: int
    warmupCosineLRWarmupEpochs: int
    weightDecay: int
  }
  primaryMetric: 'MeanAveragePrecision'
  searchSpace: [
    {
      amsGradient: 'string'
      augmentations: 'string'
      beta1: 'string'
      beta2: 'string'
      boxDetectionsPerImage: 'string'
      boxScoreThreshold: 'string'
      distributed: 'string'
      earlyStopping: 'string'
      earlyStoppingDelay: 'string'
      earlyStoppingPatience: 'string'
      enableOnnxNormalization: 'string'
      evaluationFrequency: 'string'
      gradientAccumulationStep: 'string'
      imageSize: 'string'
      layersToFreeze: 'string'
      learningRate: 'string'
      learningRateScheduler: 'string'
      maxSize: 'string'
      minSize: 'string'
      modelName: 'string'
      modelSize: 'string'
      momentum: 'string'
      multiScale: 'string'
      nesterov: 'string'
      nmsIouThreshold: 'string'
      numberOfEpochs: 'string'
      numberOfWorkers: 'string'
      optimizer: 'string'
      randomSeed: 'string'
      stepLRGamma: 'string'
      stepLRStepSize: 'string'
      tileGridSize: 'string'
      tileOverlapRatio: 'string'
      tilePredictionsNmsThreshold: 'string'
      trainingBatchSize: 'string'
      validationBatchSize: 'string'
      validationIouThreshold: 'string'
      validationMetricType: 'string'
      warmupCosineLRCycles: 'string'
      warmupCosineLRWarmupEpochs: 'string'
      weightDecay: 'string'
    }
  ]
  sweepSettings: {
    earlyTermination: {
      delayEvaluation: int
      evaluationInterval: int
      policyType: 'string'
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm: 'string'
  }
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }
  validationDataSize: int

För Regressionanvänder du:

  taskType: 'Regression'
  cvSplitColumnNames: [
    'string'
  ]
  featurizationSettings: {
    blockedTransformers: [
      'string'
    ]
    columnNameAndTypes: {
      {customized property}: 'string'
    }
    datasetLanguage: 'string'
    enableDnnFeaturization: bool
    mode: 'string'
    transformerParams: {
      {customized property}: [
        {
          fields: [
            'string'
          ]
          parameters: any()
        }
      ]
    }
  }
  limitSettings: {
    enableEarlyTermination: bool
    exitScore: int
    maxConcurrentTrials: int
    maxCoresPerTrial: int
    maxTrials: int
    timeout: 'string'
    trialTimeout: 'string'
  }
  nCrossValidations: {
    mode: 'string'
    // For remaining properties, see NCrossValidations objects
  }
  primaryMetric: 'string'
  testData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }
  testDataSize: int
  trainingSettings: {
    allowedTrainingAlgorithms: [
      'string'
    ]
    blockedTrainingAlgorithms: [
      'string'
    ]
    enableDnnTraining: bool
    enableModelExplainability: bool
    enableOnnxCompatibleModels: bool
    enableStackEnsemble: bool
    enableVoteEnsemble: bool
    ensembleModelDownloadTimeout: 'string'
    stackEnsembleSettings: {
      stackMetaLearnerKWargs: any()
      stackMetaLearnerTrainPercentage: int
      stackMetaLearnerType: 'string'
    }
  }
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }
  validationDataSize: int
  weightColumnName: 'string'

För TextClassificationanvänder du:

  taskType: 'TextClassification'
  featurizationSettings: {
    datasetLanguage: 'string'
  }
  limitSettings: {
    maxConcurrentTrials: int
    maxTrials: int
    timeout: 'string'
  }
  primaryMetric: 'string'
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }

För TextClassificationMultilabelanvänder du:

  taskType: 'TextClassificationMultilabel'
  featurizationSettings: {
    datasetLanguage: 'string'
  }
  limitSettings: {
    maxConcurrentTrials: int
    maxTrials: int
    timeout: 'string'
  }
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }

För TextNERanvänder du:

  taskType: 'TextNER'
  featurizationSettings: {
    datasetLanguage: 'string'
  }
  limitSettings: {
    maxConcurrentTrials: int
    maxTrials: int
    timeout: 'string'
  }
  validationData: {
    description: 'string'
    jobInputType: 'string'
    mode: 'string'
    uri: 'string'
  }

NCrossValidations-objekt

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  mode: 'Auto'

För anpassadanvänder du:

  mode: 'Custom'
  value: int

ForecastHorizon-objekt

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  mode: 'Auto'

För anpassadanvänder du:

  mode: 'Custom'
  value: int

Säsongsvariationer

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  mode: 'Auto'

För anpassadanvänder du:

  mode: 'Custom'
  value: int

TargetLags-objekt

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  mode: 'Auto'

För anpassadanvänder du:

  mode: 'Custom'
  values: [
    int
  ]

TargetRollingWindowSize-objekt

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  mode: 'Auto'

För anpassadanvänder du:

  mode: 'Custom'
  value: int

EarlyTerminationPolicy-objekt

Ange egenskapen policyType för att ange typ av objekt.

För Banditanvänder du:

  policyType: 'Bandit'
  slackAmount: int
  slackFactor: int

För MedianStoppinganvänder du:

  policyType: 'MedianStopping'

För TruncationSelectionanvänder du:

  policyType: 'TruncationSelection'
  truncationPercentage: int

DistributionKonfigurationsobjekt

Ange egenskapen distributionType för att ange typ av objekt.

För Mpianvänder du:

  distributionType: 'Mpi'
  processCountPerInstance: int

För PyTorchanvänder du:

  distributionType: 'PyTorch'
  processCountPerInstance: int

För TensorFlowanvänder du:

  distributionType: 'TensorFlow'
  parameterServerCount: int
  workerCount: int

JobInput-objekt

Ange egenskapen jobInputType för att ange typ av objekt.

För custom_modelanvänder du:

  jobInputType: 'custom_model'
  mode: 'string'
  uri: 'string'

För literalanvänder du:

  jobInputType: 'literal'
  value: 'string'

För mlflow_modelanvänder du:

  jobInputType: 'mlflow_model'
  mode: 'string'
  uri: 'string'

För mltableanvänder du:

  jobInputType: 'mltable'
  mode: 'string'
  uri: 'string'

För triton_modelanvänder du:

  jobInputType: 'triton_model'
  mode: 'string'
  uri: 'string'

För uri_fileanvänder du:

  jobInputType: 'uri_file'
  mode: 'string'
  uri: 'string'

För uri_folderanvänder du:

  jobInputType: 'uri_folder'
  mode: 'string'
  uri: 'string'

SamplingAlgorithm-objekt

Ange egenskapen samplingAlgorithmType för att ange typ av objekt.

För Bayesianskaanvänder du:

  samplingAlgorithmType: 'Bayesian'

För Gridanvänder du:

  samplingAlgorithmType: 'Grid'

För Randomanvänder du:

  samplingAlgorithmType: 'Random'
  rule: 'string'
  seed: int

MonitorComputeConfigurationBase-objekt

Ange egenskapen computeType för att ange typ av objekt.

För ServerlessSparkanvänder du:

  computeType: 'ServerlessSpark'
  computeIdentity: {
    computeIdentityType: 'string'
    // For remaining properties, see MonitorComputeIdentityBase objects
  }
  instanceType: 'string'
  runtimeVersion: 'string'

ÖvervakaComputeIdentityBase-objekt

Ange egenskapen computeIdentityType för att ange typ av objekt.

För AmlTokenanvänder du:

  computeIdentityType: 'AmlToken'

För ManagedIdentityanvänder du:

  computeIdentityType: 'ManagedIdentity'
  identity: {
    type: 'string'
    userAssignedIdentities: {
      {customized property}: {}
    }
  }

MonitoringSignalBase-objekt

Ange egenskapen signalType för att ange typ av objekt.

För anpassadanvänder du:

  signalType: 'Custom'
  componentId: 'string'
  inputAssets: {
    {customized property}: {
      columns: {
        {customized property}: 'string'
      }
      dataContext: 'string'
      jobInputType: 'string'
      uri: 'string'
      inputDataType: 'string'
      // For remaining properties, see MonitoringInputDataBase objects
    }
  }
  inputs: {
    {customized property}: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
  }
  metricThresholds: [
    {
      metric: 'string'
      threshold: {
        value: int
      }
    }
  ]

För DataDriftanvänder du:

  signalType: 'DataDrift'
  featureDataTypeOverride: {
    {customized property}: 'string'
  }
  featureImportanceSettings: {
    mode: 'string'
    targetColumn: 'string'
  }
  features: {
    filterType: 'string'
    // For remaining properties, see MonitoringFeatureFilterBase objects
  }
  metricThresholds: [
    {
      threshold: {
        value: int
      }
      dataType: 'string'
      // For remaining properties, see DataDriftMetricThresholdBase objects
    }
  ]
  productionData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }
  referenceData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }

För DataQualityanvänder du:

  signalType: 'DataQuality'
  featureDataTypeOverride: {
    {customized property}: 'string'
  }
  featureImportanceSettings: {
    mode: 'string'
    targetColumn: 'string'
  }
  features: {
    filterType: 'string'
    // For remaining properties, see MonitoringFeatureFilterBase objects
  }
  metricThresholds: [
    {
      threshold: {
        value: int
      }
      dataType: 'string'
      // For remaining properties, see DataQualityMetricThresholdBase objects
    }
  ]
  productionData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }
  referenceData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }

För FeatureAttributionDriftanvänder du:

  signalType: 'FeatureAttributionDrift'
  featureDataTypeOverride: {
    {customized property}: 'string'
  }
  featureImportanceSettings: {
    mode: 'string'
    targetColumn: 'string'
  }
  metricThreshold: {
    metric: 'NormalizedDiscountedCumulativeGain'
    threshold: {
      value: int
    }
  }
  productionData: [
    {
      columns: {
        {customized property}: 'string'
      }
      dataContext: 'string'
      jobInputType: 'string'
      uri: 'string'
      inputDataType: 'string'
      // For remaining properties, see MonitoringInputDataBase objects
    }
  ]
  referenceData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }

För PredictionDriftanvänder du:

  signalType: 'PredictionDrift'
  featureDataTypeOverride: {
    {customized property}: 'string'
  }
  metricThresholds: [
    {
      threshold: {
        value: int
      }
      dataType: 'string'
      // For remaining properties, see PredictionDriftMetricThresholdBase objects
    }
  ]
  productionData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }
  referenceData: {
    columns: {
      {customized property}: 'string'
    }
    dataContext: 'string'
    jobInputType: 'string'
    uri: 'string'
    inputDataType: 'string'
    // For remaining properties, see MonitoringInputDataBase objects
  }

MonitoringInputDataBase-objekt

Ange egenskapen inputDataType för att ange typ av objekt.

För fastanvänder du:

  inputDataType: 'Fixed'

För rullandeanvänder du:

  inputDataType: 'Rolling'
  preprocessingComponentId: 'string'
  windowOffset: 'string'
  windowSize: 'string'

För Staticanvänder du:

  inputDataType: 'Static'
  preprocessingComponentId: 'string'
  windowEnd: 'string'
  windowStart: 'string'

ÖvervakningFeatureFilterBase-objekt

Ange egenskapen filterType för att ange typ av objekt.

För AllFeaturesanvänder du:

  filterType: 'AllFeatures'

För FeatureSubsetanvänder du:

  filterType: 'FeatureSubset'
  features: [
    'string'
  ]

För TopNByAttributionanvänder du:

  filterType: 'TopNByAttribution'
  top: int

DataDriftMetricThresholdBase-objekt

Ange egenskapen dataType för att ange typ av objekt.

För kategoriskaanvänder du:

  dataType: 'Categorical'
  metric: 'string'

För numeriskaanvänder du:

  dataType: 'Numerical'
  metric: 'string'

DataQualityMetricThresholdBase-objekt

Ange egenskapen dataType för att ange typ av objekt.

För kategoriskaanvänder du:

  dataType: 'Categorical'
  metric: 'string'

För numeriskaanvänder du:

  dataType: 'Numerical'
  metric: 'string'

PredictionDriftMetricThresholdBase-objekt

Ange egenskapen dataType för att ange typ av objekt.

För kategoriskaanvänder du:

  dataType: 'Categorical'
  metric: 'string'

För numeriskaanvänder du:

  dataType: 'Numerical'
  metric: 'string'

TriggerBase-objekt

Ange egenskapen triggerType för att ange typ av objekt.

För Cronanvänder du:

  triggerType: 'Cron'
  expression: 'string'

Använd för återkommande:

  triggerType: 'Recurrence'
  frequency: 'string'
  interval: int
  schedule: {
    hours: [
      int
    ]
    minutes: [
      int
    ]
    monthDays: [
      int
    ]
    weekDays: [
      'string'
    ]
  }

Egenskapsvärden

arbetsytor/scheman

Namn Beskrivning Värde
Namn Resursnamnet

Se hur du anger namn och typer för underordnade resurser i Bicep.
sträng (krävs)
förälder I Bicep kan du ange den överordnade resursen för en underordnad resurs. Du behöver bara lägga till den här egenskapen när den underordnade resursen deklareras utanför den överordnade resursen.

Mer information finns i Underordnad resurs utanför den överordnade resursen.
Symboliskt namn för resurs av typen: arbetsytor
Egenskaper [Krävs] Ytterligare attribut för entiteten. ScheduleProperties (krävs)

ScheduleProperties

Namn Beskrivning Värde
handling [Krävs] Anger åtgärden i schemat ScheduleActionBase (krävs)
beskrivning Texten för tillgångsbeskrivningen. sträng
displayName Visningsnamn för schemat. sträng
isEnabled Är schemat aktiverat? Bool
Egenskaper Ordlistan för tillgångsegenskap. ResourceBaseProperties
Taggar Taggordlista. Taggar kan läggas till, tas bort och uppdateras. objekt
utlösa [Krävs] Anger utlösarinformationen TriggerBase (krävs)

ScheduleActionBase

Namn Beskrivning Värde
actionType Ange objekttyp CreateJob
CreateMonitor
InvokeBatchEndpoint (krävs)

JobScheduleAction

Namn Beskrivning Värde
actionType [Krävs] Anger åtgärdstypen för schemat "CreateJob" (krävs)
jobDefinition [Krävs] Definierar information om schemalägg åtgärdsdefinition. JobBaseProperties (krävs)

JobBaseProperties

Namn Beskrivning Värde
componentId ARM-resurs-ID för komponentresursen. sträng
computeId ARM-resurs-ID för beräkningsresursen. sträng
beskrivning Texten för tillgångsbeskrivningen. sträng
displayName Visningsnamn för jobbet. sträng
experimentName Namnet på experimentet som jobbet tillhör. Om det inte anges placeras jobbet i experimentet "Standard". sträng
identitet Identitetskonfiguration. Om det anges bör detta vara en av AmlToken, ManagedIdentity, UserIdentity eller null.
Standardvärdet är AmlToken om null.
IdentityConfiguration
isArchived Arkiveras tillgången? Bool
Egenskaper Ordlistan för tillgångsegenskap. ResourceBaseProperties
tjänster Lista över JobEndpoints.
För lokala jobb har en jobbslutpunkt ett slutpunktsvärde för FileStreamObject.
JobBaseServices
Taggar Taggordlista. Taggar kan läggas till, tas bort och uppdateras. objekt
jobType Ange objekttyp AutoML-
kommando
Pipeline
Svep (krävs)

IdentityConfiguration

Namn Beskrivning Värde
identityType Ange objekttyp AMLToken
Hanterad
UserIdentity (krävs)

AmlToken

Namn Beskrivning Värde
identityType [Krävs] Anger typen av identitetsramverk. "AMLToken" (krävs)

Hanterad identitet

Namn Beskrivning Värde
identityType [Krävs] Anger typen av identitetsramverk. "Hanterad" (krävs)
clientId Anger en användartilldelad identitet efter klient-ID. Ange inte det här fältet för systemtilldelade. sträng

Begränsningar:
Min längd = 36
Maximal längd = 36
Mönster = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
objectId Anger en användartilldelad identitet efter objekt-ID. Ange inte det här fältet för systemtilldelade. sträng

Begränsningar:
Min längd = 36
Maximal längd = 36
Mönster = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
resourceId Anger en användartilldelad identitet efter ARM-resurs-ID. Ange inte det här fältet för systemtilldelade. sträng

UserIdentity

Namn Beskrivning Värde
identityType [Krävs] Anger typen av identitetsramverk. "UserIdentity" (krävs)

ResourceBaseProperties

Namn Beskrivning Värde
{anpassad egenskap} sträng

JobBaseServices

Namn Beskrivning Värde
{anpassad egenskap} JobService

JobService

Namn Beskrivning Värde
Slutpunkt Url för slutpunkt. sträng
jobServiceType Slutpunktstyp. sträng
Noder Noder som användaren vill starta tjänsten på.
Om Noder inte har angetts eller angetts till null startas tjänsten endast på leader-noden.
noder
hamn Port för slutpunkt. Int
Egenskaper Ytterligare egenskaper som ska anges på slutpunkten. JobServiceProperties

Noder

Namn Beskrivning Värde
nodesValueType Ange objekttyp Alla (krävs)

Allanoder

Namn Beskrivning Värde
nodesValueType [Krävs] Typ av nodvärde "Alla" (krävs)

JobServiceEgenskaper

Namn Beskrivning Värde
{anpassad egenskap} sträng

AutoMLJob

Namn Beskrivning Värde
jobType [Krävs] Anger typen av jobb. "AutoML" (krävs)
environmentId ARM-resurs-ID för miljöspecifikationen för jobbet.
Det här är ett valfritt värde för att ange, om det inte anges, att AutoML standardinställningen är produktionsversion av autoML-kurerad miljö när jobbet körs.
sträng
environmentVariables Miljövariabler som ingår i jobbet. AutoMLJobEnvironmentVariables
Utgångar Mappning av utdatabindningar som används i jobbet. AutoMLJobOutputs
queueSettings Köinställningar för jobbet QueueSettings
Resurser Beräkningsresurskonfiguration för jobbet. JobResourceConfiguration
taskDetails [Krävs] Detta representerar scenario som kan vara en av tabeller/NLP/image AutoMLVertical (krävs)

AutoMLJobEnvironmentVariables

Namn Beskrivning Värde
{anpassad egenskap} sträng

AutoMLJobOutputs

Namn Beskrivning Värde
{anpassad egenskap} JobOutput

JobOutput

Namn Beskrivning Värde
beskrivning Beskrivning av utdata. sträng
jobOutputType Ange objekttyp custom_model
mlflow_model
mltable
triton_model
uri_file
uri_folder (krävs)

CustomModelJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "custom_model" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

MLFlowModelJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "mlflow_model" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

MLTableJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "mltable" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

TritonModelJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "triton_model" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

UriFileJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "uri_file" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

UriFolderJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "uri_folder" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

Köinställningar

Namn Beskrivning Värde
jobTier Styr beräkningsjobbnivån "Grundläggande"
"Null"
"Premium"
"Spot"
"Standard"

JobResourceConfiguration

Namn Beskrivning Värde
dockerArgs Extra argument att skicka till Docker-körningskommandot. Detta skulle åsidosätta alla parametrar som redan har angetts av systemet, eller i det här avsnittet. Den här parametern stöds endast för Azure ML-beräkningstyper. sträng
instanceCount Valfritt antal instanser eller noder som används av beräkningsmålet. Int
instanceType Valfri typ av virtuell dator som stöds av beräkningsmålet. sträng
Egenskaper Ytterligare egenskapsväska. ResourceConfigurationProperties
shmSize Storleken på docker-containerns delade minnesblock. Detta bör vara i formatet (number)(unit) där talet ska vara större än 0 och enheten kan vara en av b(byte), k(kilobyte), m(megabyte) eller g(gigabyte). sträng

Begränsningar:
Mönster = \d+[bBkKmMgG]

ResourceConfigurationProperties

Namn Beskrivning Värde
{anpassad egenskap} För Bicep kan du använda funktionen any().

AutoMLVertical

Namn Beskrivning Värde
logVerbosity Logga verbositet för jobbet. "Kritisk"
"Felsöka"
"Fel"
"Info"
"NotSet"
"Varning"
targetColumnName Målkolumnnamn: Det här är kolumnen förutsägelsevärden.
Kallas även etikettkolumnnamn i kontexten för klassificeringsuppgifter.
sträng
trainingData [Krävs] Träningsdataindata. MLTableJobInput (krävs)
taskType Ange objekttyp Klassificering
Prognostisering
ImageClassification
ImageClassificationMultilabel
ImageInstanceSegmentation
ImageObjectDetection
Regression
TextKlassificering
TextClassificationMultilabel
TextNER (krävs)

MLTableJobInput

Namn Beskrivning Värde
beskrivning Beskrivning av indata. sträng
jobInputType [Krävs] Anger typen av jobb. "custom_model"
"literal"
"mlflow_model"
"mltable"
"triton_model"
"uri_file"
"uri_folder" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

Klassificering

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "Klassificering" (krävs)
cvSplitColumnNames Kolumner som ska användas för CVSplit-data. string[]
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. TableVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. TableVerticalLimitSettings
nCrossValidations Antal korsvalideringsdelegeringar som ska tillämpas på träningsdatauppsättningen
när valideringsdatauppsättningen inte har angetts.
NCrossValidations
positiveLabel Positiv etikett för beräkning av binära mått. sträng
primaryMetric Primärt mått för aktiviteten. "AUCWeighted"
"Noggrannhet"
"AveragePrecisionScoreWeighted"
"NormMacroRecall"
"PrecisionScoreWeighted"
testData Testa indata. MLTableJobInput
testDataSize Den del av testdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
trainingSettings Indata för träningsfasen för ett AutoML-jobb. ClassificationTrainingSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
weightColumnName Namnet på exempelviktkolumnen. Automatiserad ML stöder en viktad kolumn som indata, vilket gör att rader i data viktas upp eller ned. sträng

TableVerticalFeaturizationSettings

Namn Beskrivning Värde
blockedTransformers Dessa transformatorer får inte användas vid funktionalisering. Strängmatris som innehåller något av:
"CatTargetEncoder"
"CountVectorizer"
"HashOneHotEncoder"
"LabelEncoder"
"NaiveBayes"
"OneHotEncoder"
"TextTargetEncoder"
"TfIdf"
"WoETargetEncoder"
"WordEmbedding"
columnNameAndTypes Ordlista med kolumnnamn och dess typ (int, float, string, datetime osv.). TableVerticalFeaturizationSettingsColumnNameAndTypes
datasetLanguage Datamängdsspråk, användbart för textdata. sträng
enableDnnFeaturization Avgör om du vill använda Dnn-baserade funktionaliserare för datafunktionalisering. Bool
läge Funktionaliseringsläge – Användaren kan behålla standardläget "Auto" och AutoML tar hand om nödvändig omvandling av data i funktionaliseringsfasen.
Om "Av" har valts görs ingen funktionalisering.
Om "Anpassad" har valts kan användaren ange ytterligare indata för att anpassa hur funktionalisering görs.
"Auto"
"Anpassad"
"Av"
transformerParams Användaren kan ange ytterligare transformatorer som ska användas tillsammans med de kolumner som den skulle tillämpas på och parametrar för transformeringskonstruktorn. TableVerticalFeaturizationSettingsTransformerParams

TableVerticalFeaturizationSettingsColumnNameAndTypes

Namn Beskrivning Värde
{anpassad egenskap} sträng

TableVerticalFeaturizationSettingsTransformerParams

Namn Beskrivning Värde
{anpassad egenskap} ColumnTransformer[]

ColumnTransformer

Namn Beskrivning Värde
Fält Fält som transformerarlogik ska tillämpas på. string[]
Parametrar Olika egenskaper som ska skickas till transformatorn.
Indata som förväntas är en ordlista med nyckel/värde-par i JSON-format.
För Bicep kan du använda funktionen any().

TableVerticalLimitSettings

Namn Beskrivning Värde
enableEarlyTermination Aktivera tidig avslutning, avgör om AutoMLJob avslutas tidigt om det inte finns någon poängförbättring under de senaste 20 iterationerna. Bool
exitScore Slutpoäng för AutoML-jobbet. Int
maxConcurrentTrials Maximalt antal samtidiga iterationer. Int
maxCoresPerTrial Maximalt antal kärnor per iteration. Int
maxTrials Antal iterationer. Int
Timeout Tidsgräns för AutoML-jobb. sträng
trialTimeout Timeout för iteration. sträng

NCrossValidations

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoNCrossValidations

Namn Beskrivning Värde
läge [Krävs] Läge för att fastställa N-Korsvalidering. "Auto" (krävs)

CustomNCrossValidations

Namn Beskrivning Värde
läge [Krävs] Läge för att fastställa N-Korsvalidering. "Anpassad" (krävs)
värde [Krävs] Värde för N-Korsvalidering. int (krävs)

ClassificationTrainingSettings

Namn Beskrivning Värde
allowedTrainingAlgorithms Tillåtna modeller för klassificeringsaktivitet. Strängmatris som innehåller något av:
"BernoulliNaiveBayes"
"DecisionTree"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LightGBM"
"LinearSVM"
"LogisticRegression"
"MultinomialNaiveBayes"
"RandomForest"
"SGD"
"SVM"
"XGBoostClassifier"
blockedTrainingAlgorithms Blockerade modeller för klassificeringsaktivitet. Strängmatris som innehåller något av:
"BernoulliNaiveBayes"
"DecisionTree"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LightGBM"
"LinearSVM"
"LogisticRegression"
"MultinomialNaiveBayes"
"RandomForest"
"SGD"
"SVM"
"XGBoostClassifier"
enableDnnTraining Aktivera rekommendation för DNN-modeller. Bool
enableModelExplainability Flagga för att aktivera förklaring på bästa modell. Bool
enableOnnxCompatibleModels Flagga för att aktivera onnx-kompatibla modeller. Bool
enableStackEnsemble Aktivera stackensemblekörning. Bool
enableVoteEnsemble Aktivera röstningsensemblekörning. Bool
ensembleModelDownloadTimeout Under VotingEnsemble- och StackEnsemble-modellgenereringen laddas flera anpassade modeller från de tidigare underordnade körningarna ned.
Konfigurera den här parametern med ett högre värde än 300 sekunder om det behövs mer tid.
sträng
stackEnsembleSettings Inställningar för stackensembler för stackensemblekörning. StackEnsembleSettings

StackEnsembleSettings

Namn Beskrivning Värde
stackMetaLearnerKWargs Valfria parametrar som ska skickas till metainlärarens initierare. För Bicep kan du använda funktionen any().
stackMetaLearnerTrainPercentage Anger den andel av träningsuppsättningen (när du väljer tränings- och valideringstyp för träning) som ska reserveras för träning av metaläraren. Standardvärdet är 0,2. Int
stackMetaLearnerType Metainläraren är en modell som tränas på utdata från de enskilda heterogena modellerna. "ElasticNet"
"ElasticNetCV"
"LightGBMClassifier"
"LightGBMRegressor"
"Linjärregression"
"LogisticRegression"
"LogisticRegressionCV"
"Ingen"

Prognostisering

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "Prognostisering" (krävs)
cvSplitColumnNames Kolumner som ska användas för CVSplit-data. string[]
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. TableVerticalFeaturizationSettings
forecastingSettings Prognostisera aktivitetsspecifika indata. ForecastingSettings
limitSettings Körningsbegränsningar för AutoMLJob. TableVerticalLimitSettings
nCrossValidations Antal korsvalideringsdelegeringar som ska tillämpas på träningsdatauppsättningen
när valideringsdatauppsättningen inte har angetts.
NCrossValidations
primaryMetric Primärt mått för prognostiseringsaktivitet. "NormalizedMeanAbsoluteError"
"NormalizedRootMeanSquaredError"
"R2Score"
"SpearmanCorrelation"
testData Testa indata. MLTableJobInput
testDataSize Den del av testdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
trainingSettings Indata för träningsfasen för ett AutoML-jobb. ForecastingTrainingSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
weightColumnName Namnet på exempelviktkolumnen. Automatiserad ML stöder en viktad kolumn som indata, vilket gör att rader i data viktas upp eller ned. sträng

PrognostiseringInställningar

Namn Beskrivning Värde
countryOrRegionForHolidays Land eller region för helgdagar för prognostiseringsuppgifter.
Dessa bör vara ISO 3166 tvåbokstavs lands-/regionkoder, till exempel "US" eller "GB".
sträng
cvStepSize Antal perioder mellan ursprungstiden för en CV-vikning och nästa vik. För
om CVStepSize = 3 för dagliga data, kommer ursprungstiden för varje vik att vara
med tre dagars mellanrum.
Int
featureLags Flagga för att generera fördröjningar för de numeriska funktionerna med "auto" eller null. "Auto"
"Ingen"
forecastHorizon Den önskade maximala prognoshorisonten i tidsseriefrekvensenheter. ForecastHorizon
frekvens Vid prognostisering representerar den här parametern den period med vilken prognosen önskas, till exempel dagligen, varje vecka, varje år osv. Prognosfrekvensen är datamängdsfrekvens som standard. sträng
Säsongsvariationer Ange säsongsvariationer för tidsserier som en heltalsmultipel för seriefrekvensen.
Om säsongsvariationen är inställd på "auto" kommer den att härledas.
Säsongsvariationer
shortSeriesHandlingConfig Parametern som definierar hur AutoML ska hantera korta tidsserier. "Auto"
"Släpp"
"Ingen"
"Pad"
targetAggregateFunction Den funktion som ska användas för att aggregera målkolumnen för tidsserier så att den överensstämmer med en angiven användarfrekvens.
Om TargetAggregateFunction har angetts, t.ex. inte "None", men freq-parametern inte har angetts, utlöses felet. Möjliga målsammansättningsfunktioner är: "sum", "max", "min" och "mean".
"Max"
"Medelvärde"
"Min"
"Ingen"
"Summa"
targetLags Antalet tidigare perioder som ska fördröjas från målkolumnen. TargetLags
targetRollingWindowSize Antalet tidigare perioder som används för att skapa ett rullande fönstergenomsnitt för målkolumnen. TargetRollingWindowSize
timeColumnName Namnet på tidskolumnen. Den här parametern krävs vid prognostisering för att ange kolumnen datetime i indata som används för att skapa tidsserierna och härleda dess frekvens. sträng
timeSeriesIdColumnNames Namnen på kolumner som används för att gruppera en tidsserie. Den kan användas för att skapa flera serier.
Om kornigheten inte har definierats antas datauppsättningen vara en tidsserie. Den här parametern används med prognostisering av aktivitetstyp.
string[]
useStl Konfigurera STL-nedbrytning av målkolumnen för tidsserier. "Ingen"
"Säsong"
"SeasonTrend"

ForecastHorizon

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoForecastHorizon

Namn Beskrivning Värde
läge [Krävs] Ange markeringsläge för prognoshorisontvärde. "Auto" (krävs)

CustomForecastHorizon

Namn Beskrivning Värde
läge [Krävs] Ange markeringsläge för prognoshorisontvärde. "Anpassad" (krävs)
värde [Krävs] Prognoshorisontvärde. int (krävs)

Säsongsvariationer

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoSeasonality

Namn Beskrivning Värde
läge [Krävs] Säsongsläge. "Auto" (krävs)

CustomSeasonality

Namn Beskrivning Värde
läge [Krävs] Säsongsläge. "Anpassad" (krävs)
värde [Krävs] Säsongsvärde. int (krävs)

TargetLags

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoTargetLags

Namn Beskrivning Värde
läge [Krävs] Ange målfördröjningsläge – Automatiskt/anpassat "Auto" (krävs)

CustomTargetLags

Namn Beskrivning Värde
läge [Krävs] Ange målfördröjningsläge – Automatiskt/anpassat "Anpassad" (krävs)
värden [Krävs] Ange målfördröjningsvärden. int[] (krävs)

TargetRollingWindowSize

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoTargetRollingWindowSize

Namn Beskrivning Värde
läge [Krävs] TargetRollingWindowSiz identifieringsläge. "Auto" (krävs)

CustomTargetRollingWindowSize

Namn Beskrivning Värde
läge [Krävs] TargetRollingWindowSiz identifieringsläge. "Anpassad" (krävs)
värde [Krävs] TargetRollingWindowSize-värde. int (krävs)

ForecastingTrainingSettings

Namn Beskrivning Värde
allowedTrainingAlgorithms Tillåtna modeller för prognostiseringsaktivitet. Strängmatris som innehåller något av:
"Arimax"
"AutoArima"
"Genomsnitt"
"DecisionTree"
"ElasticNet"
"ExponentialSmoothing"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LassoLars"
"LightGBM"
"Naive"
"Profet"
"RandomForest"
"SGD"
"SeasonalAverage"
"SeasonalNaive"
"TCNForecaster"
"XGBoostRegressor"
blockedTrainingAlgorithms Blockerade modeller för prognostiseringsaktivitet. Strängmatris som innehåller något av:
"Arimax"
"AutoArima"
"Genomsnitt"
"DecisionTree"
"ElasticNet"
"ExponentialSmoothing"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LassoLars"
"LightGBM"
"Naive"
"Profet"
"RandomForest"
"SGD"
"SeasonalAverage"
"SeasonalNaive"
"TCNForecaster"
"XGBoostRegressor"
enableDnnTraining Aktivera rekommendation för DNN-modeller. Bool
enableModelExplainability Flagga för att aktivera förklaring på bästa modell. Bool
enableOnnxCompatibleModels Flagga för att aktivera onnx-kompatibla modeller. Bool
enableStackEnsemble Aktivera stackensemblekörning. Bool
enableVoteEnsemble Aktivera röstningsensemblekörning. Bool
ensembleModelDownloadTimeout Under VotingEnsemble- och StackEnsemble-modellgenereringen laddas flera anpassade modeller från de tidigare underordnade körningarna ned.
Konfigurera den här parametern med ett högre värde än 300 sekunder om det behövs mer tid.
sträng
stackEnsembleSettings Inställningar för stackensembler för stackensemblekörning. StackEnsembleSettings

ImageClassification

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "ImageClassification" (krävs)
limitSettings [Krävs] Begränsa inställningarna för AutoML-jobbet. ImageLimitSettings (krävs)
modelSettings Inställningar som används för att träna modellen. ImageModelSettingsClassification
primaryMetric Primärt mått för att optimera för den här uppgiften. "AUCWeighted"
"Noggrannhet"
"AveragePrecisionScoreWeighted"
"NormMacroRecall"
"PrecisionScoreWeighted"
searchSpace Sök efter sampling av olika kombinationer av modeller och deras hyperparametrar. ImageModelDistributionSettingsClassification[]
sweepSettings Sopning av modeller och hyperparametrar som sveper relaterade inställningar. ImageSweepSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int

ImageLimitSettings

Namn Beskrivning Värde
maxConcurrentTrials Maximalt antal samtidiga AutoML-iterationer. Int
maxTrials Maximalt antal AutoML-iterationer. Int
Timeout Tidsgräns för AutoML-jobb. sträng

ImageModelSettingsClassification

Namn Beskrivning Värde
advancedSettings Inställningar för avancerade scenarier. sträng
amsGradient Aktivera AMSGrad när optimeraren är "adam" eller "adamw". Bool
Stödsystem Inställningar för att använda förhöjda inställningar. sträng
beta1 Värdet för "beta1" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. Int
beta2 Värdet för "beta2" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. Int
checkpointFrequency Frekvens för att lagra modellkontrollpunkter. Måste vara ett positivt heltal. Int
checkpointModel Den förtränad kontrollpunktsmodellen för inkrementell träning. MLFlowModelJobInput
checkpointRunId ID:t för en tidigare körning som har en förtränad kontrollpunkt för inkrementell träning. sträng
distribuerad Om du vill använda distribuerad träning. Bool
earlyStopping Aktivera tidig stopplogik under träning. Bool
earlyStoppingDelay Minsta antal epoker eller valideringsutvärderingar som ska vänta innan den primära måttförbättringen
spåras för tidig stoppning. Måste vara ett positivt heltal.
Int
earlyStoppingPatience Minsta antal epoker eller valideringsutvärderingar utan primär måttförbättring före
-körningen stoppas. Måste vara ett positivt heltal.
Int
enableOnnxNormalization Aktivera normalisering vid export av ONNX-modell. Bool
evaluationFrequency Frekvens för att utvärdera valideringsdatauppsättningen för att hämta måttpoäng. Måste vara ett positivt heltal. Int
gradientAccumulationStep Toningsansamling innebär att du kör ett konfigurerat antal "GradAccumulationStep"-steg utan
uppdatera modellvikterna medan du ackumulerar toningarna i dessa steg och sedan använder
de ackumulerade toningarna för att beräkna viktuppdateringarna. Måste vara ett positivt heltal.
Int
layerToFreeze Antal lager som ska frysas för modellen. Måste vara ett positivt heltal.
Att till exempel skicka 2 som värde för "seresnext" innebär
frysskikt0 och lager1. En fullständig lista över modeller som stöds och information om lagerfrysning finns i
se: /azure/machine-learning/how-to-auto-train-image-models.
Int
learningRate Inledande inlärningsfrekvens. Måste vara en flottör i intervallet [0, 1]. Int
learningRateScheduler Typ av schemaläggare för inlärningsfrekvens. Måste vara "warmup_cosine" eller "steg". "Ingen"
"Steg"
"WarmupCosine"
modelName Namnet på den modell som ska användas för träning.
Mer information om tillgängliga modeller finns i den officiella dokumentationen:
/azure/machine-learning/how-to-auto-train-image-models.
sträng
rörelsemängd Värdet för momentum när optimeraren är "sgd". Måste vara en flottör i intervallet [0, 1]. Int
nesterov Aktivera nesterov när optimeraren är "sgd". Bool
numberOfEpochs Antal träningsepoker. Måste vara ett positivt heltal. Int
numberOfWorkers Antal datainläsningsarbetare. Måste vara ett icke-negativt heltal. Int
Optimizer Typ av optimerare. "Adam"
"Adamw"
"Ingen"
"Sgd"
randomSeed Slumpmässigt frö som ska användas vid användning av deterministisk träning. Int
stepLRGamma Värdet för gamma när learning rate scheduler är "step". Måste vara en flottör i intervallet [0, 1]. Int
stepLRStepSize Värdet för stegstorlek när schemaläggaren för inlärningsfrekvens är "steg". Måste vara ett positivt heltal. Int
trainingBatchSize Träningsbatchstorlek. Måste vara ett positivt heltal. Int
trainingCropSize Bildgrödstorlek som är indata till det neurala nätverket för träningsdatauppsättningen. Måste vara ett positivt heltal. Int
validationBatchSize Valideringsbatchstorlek. Måste vara ett positivt heltal. Int
validationCropSize Bildgrödstorlek som är indata till det neurala nätverket för valideringsdatauppsättningen. Måste vara ett positivt heltal. Int
validationResizeSize Bildstorlek som du vill ändra storlek på innan du beskär för valideringsdatauppsättningen. Måste vara ett positivt heltal. Int
warmupCosineLRCycles Värdet för cosinincykeln när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara en flottör i intervallet [0, 1]. Int
warmupCosineLRWarmupEpochs Värdet för uppvärmningsepoker när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara ett positivt heltal. Int
weightDecay Värdet för viktförfall när optimeraren är "sgd", "adam" eller "adamw". Måste vara en float i intervallet[0, 1]. Int
weightedLoss Viktad förlust. De godkända värdena är 0 för ingen viktad förlust.
1 för viktad förlust med kvrt. (class_weights). 2 för viktad förlust med class_weights. Måste vara 0, 1 eller 2.
Int

MLFlowModelJobInput

Namn Beskrivning Värde
beskrivning Beskrivning av indata. sträng
jobInputType [Krävs] Anger typen av jobb. "custom_model"
"literal"
"mlflow_model"
"mltable"
"triton_model"
"uri_file"
"uri_folder" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

ImageModelDistributionSettingsClassification

Namn Beskrivning Värde
amsGradient Aktivera AMSGrad när optimeraren är "adam" eller "adamw". sträng
Stödsystem Inställningar för att använda förhöjda inställningar. sträng
beta1 Värdet för "beta1" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. sträng
beta2 Värdet för "beta2" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. sträng
distribuerad Om distributionsträning ska användas. sträng
earlyStopping Aktivera tidig stopplogik under träning. sträng
earlyStoppingDelay Minsta antal epoker eller valideringsutvärderingar som ska vänta innan den primära måttförbättringen
spåras för tidig stoppning. Måste vara ett positivt heltal.
sträng
earlyStoppingPatience Minsta antal epoker eller valideringsutvärderingar utan primär måttförbättring före
-körningen stoppas. Måste vara ett positivt heltal.
sträng
enableOnnxNormalization Aktivera normalisering vid export av ONNX-modell. sträng
evaluationFrequency Frekvens för att utvärdera valideringsdatauppsättningen för att hämta måttpoäng. Måste vara ett positivt heltal. sträng
gradientAccumulationStep Toningsansamling innebär att du kör ett konfigurerat antal "GradAccumulationStep"-steg utan
uppdatera modellvikterna medan du ackumulerar toningarna i dessa steg och sedan använder
de ackumulerade toningarna för att beräkna viktuppdateringarna. Måste vara ett positivt heltal.
sträng
layerToFreeze Antal lager som ska frysas för modellen. Måste vara ett positivt heltal.
Att till exempel skicka 2 som värde för "seresnext" innebär
frysskikt0 och lager1. En fullständig lista över modeller som stöds och information om lagerfrysning finns i
se: /azure/machine-learning/how-to-auto-train-image-models.
sträng
learningRate Inledande inlärningsfrekvens. Måste vara en flottör i intervallet [0, 1]. sträng
learningRateScheduler Typ av schemaläggare för inlärningsfrekvens. Måste vara "warmup_cosine" eller "steg". sträng
modelName Namnet på den modell som ska användas för träning.
Mer information om tillgängliga modeller finns i den officiella dokumentationen:
/azure/machine-learning/how-to-auto-train-image-models.
sträng
rörelsemängd Värdet för momentum när optimeraren är "sgd". Måste vara en flottör i intervallet [0, 1]. sträng
nesterov Aktivera nesterov när optimeraren är "sgd". sträng
numberOfEpochs Antal träningsepoker. Måste vara ett positivt heltal. sträng
numberOfWorkers Antal datainläsningsarbetare. Måste vara ett icke-negativt heltal. sträng
Optimizer Typ av optimerare. Måste vara antingen "sgd", "adam" eller "adamw". sträng
randomSeed Slumpmässigt frö som ska användas vid användning av deterministisk träning. sträng
stepLRGamma Värdet för gamma när learning rate scheduler är "step". Måste vara en flottör i intervallet [0, 1]. sträng
stepLRStepSize Värdet för stegstorlek när schemaläggaren för inlärningsfrekvens är "steg". Måste vara ett positivt heltal. sträng
trainingBatchSize Träningsbatchstorlek. Måste vara ett positivt heltal. sträng
trainingCropSize Bildgrödstorlek som är indata till det neurala nätverket för träningsdatauppsättningen. Måste vara ett positivt heltal. sträng
validationBatchSize Valideringsbatchstorlek. Måste vara ett positivt heltal. sträng
validationCropSize Bildgrödstorlek som är indata till det neurala nätverket för valideringsdatauppsättningen. Måste vara ett positivt heltal. sträng
validationResizeSize Bildstorlek som du vill ändra storlek på innan du beskär för valideringsdatauppsättningen. Måste vara ett positivt heltal. sträng
warmupCosineLRCycles Värdet för cosinincykeln när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara en flottör i intervallet [0, 1]. sträng
warmupCosineLRWarmupEpochs Värdet för uppvärmningsepoker när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara ett positivt heltal. sträng
weightDecay Värdet för viktförfall när optimeraren är "sgd", "adam" eller "adamw". Måste vara en float i intervallet[0, 1]. sträng
weightedLoss Viktad förlust. De godkända värdena är 0 för ingen viktad förlust.
1 för viktad förlust med kvrt. (class_weights). 2 för viktad förlust med class_weights. Måste vara 0, 1 eller 2.
sträng

ImageSweepSettings

Namn Beskrivning Värde
earlyTermination Typ av princip för tidig uppsägning. EarlyTerminationPolicy
samplingAlgorithm [Krävs] Typ av algoritmer för hyperparametersampling. "Bayesian"
Rutnät
"Random" (krävs)

EarlyTerminationPolicy

Namn Beskrivning Värde
delayEvaluation Antal intervall som den första utvärderingen ska fördröjas med. Int
evaluationInterval Intervall (antal körningar) mellan principutvärderingar. Int
policyType Ange objekttyp Bandit
MedianStopping
TruncationSelection (krävs)

BanditPolicy

Namn Beskrivning Värde
policyType [Krävs] Namn på principkonfiguration "Bandit" (krävs)
slackAmount Absolut avstånd som tillåts från den bästa körningen. Int
slackFactor Förhållandet mellan det tillåtna avståndet från den bäst presterande körningen. Int

MedianStoppingPolicy

Namn Beskrivning Värde
policyType [Krävs] Namn på principkonfiguration "MedianStopping" (krävs)

TruncationSelectionPolicy

Namn Beskrivning Värde
policyType [Krävs] Namn på principkonfiguration "TruncationSelection" (krävs)
truncationPercentage Procentandelen körningar som ska avbrytas vid varje utvärderingsintervall. Int

ImageClassificationMultilabel

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "ImageClassificationMultilabel" (krävs)
limitSettings [Krävs] Begränsa inställningarna för AutoML-jobbet. ImageLimitSettings (krävs)
modelSettings Inställningar som används för att träna modellen. ImageModelSettingsClassification
primaryMetric Primärt mått för att optimera för den här uppgiften. "AUCWeighted"
"Noggrannhet"
"AveragePrecisionScoreWeighted"
"IOU"
"NormMacroRecall"
"PrecisionScoreWeighted"
searchSpace Sök efter sampling av olika kombinationer av modeller och deras hyperparametrar. ImageModelDistributionSettingsClassification[]
sweepSettings Sopning av modeller och hyperparametrar som sveper relaterade inställningar. ImageSweepSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int

ImageInstanceSegmentation

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "ImageInstanceSegmentation" (krävs)
limitSettings [Krävs] Begränsa inställningarna för AutoML-jobbet. ImageLimitSettings (krävs)
modelSettings Inställningar som används för att träna modellen. ImageModelSettingsObjectDetection
primaryMetric Primärt mått för att optimera för den här uppgiften. "MeanAveragePrecision"
searchSpace Sök efter sampling av olika kombinationer av modeller och deras hyperparametrar. ImageModelDistributionSettingsObjectDetection[]
sweepSettings Sopning av modeller och hyperparametrar som sveper relaterade inställningar. ImageSweepSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int

ImageModelSettingsObjectDetection

Namn Beskrivning Värde
advancedSettings Inställningar för avancerade scenarier. sträng
amsGradient Aktivera AMSGrad när optimeraren är "adam" eller "adamw". Bool
Stödsystem Inställningar för att använda förhöjda inställningar. sträng
beta1 Värdet för "beta1" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. Int
beta2 Värdet för "beta2" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. Int
boxDetectionsPerImage Maximalt antal identifieringar per bild för alla klasser. Måste vara ett positivt heltal.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
boxScoreThreshold Under slutsatsdragningen returnerar du endast förslag med en klassificeringspoäng som är större än
BoxScoreThreshold. Måste vara en float i intervallet[0, 1].
Int
checkpointFrequency Frekvens för att lagra modellkontrollpunkter. Måste vara ett positivt heltal. Int
checkpointModel Den förtränad kontrollpunktsmodellen för inkrementell träning. MLFlowModelJobInput
checkpointRunId ID:t för en tidigare körning som har en förtränad kontrollpunkt för inkrementell träning. sträng
distribuerad Om du vill använda distribuerad träning. Bool
earlyStopping Aktivera tidig stopplogik under träning. Bool
earlyStoppingDelay Minsta antal epoker eller valideringsutvärderingar som ska vänta innan den primära måttförbättringen
spåras för tidig stoppning. Måste vara ett positivt heltal.
Int
earlyStoppingPatience Minsta antal epoker eller valideringsutvärderingar utan primär måttförbättring före
-körningen stoppas. Måste vara ett positivt heltal.
Int
enableOnnxNormalization Aktivera normalisering vid export av ONNX-modell. Bool
evaluationFrequency Frekvens för att utvärdera valideringsdatauppsättningen för att hämta måttpoäng. Måste vara ett positivt heltal. Int
gradientAccumulationStep Toningsansamling innebär att du kör ett konfigurerat antal "GradAccumulationStep"-steg utan
uppdatera modellvikterna medan du ackumulerar toningarna i dessa steg och sedan använder
de ackumulerade toningarna för att beräkna viktuppdateringarna. Måste vara ett positivt heltal.
Int
imageSize Bildstorlek för träning och validering. Måste vara ett positivt heltal.
Obs! Träningskörningen kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
Int
layerToFreeze Antal lager som ska frysas för modellen. Måste vara ett positivt heltal.
Att till exempel skicka 2 som värde för "seresnext" innebär
frysskikt0 och lager1. En fullständig lista över modeller som stöds och information om lagerfrysning finns i
se: /azure/machine-learning/how-to-auto-train-image-models.
Int
learningRate Inledande inlärningsfrekvens. Måste vara en flottör i intervallet [0, 1]. Int
learningRateScheduler Typ av schemaläggare för inlärningsfrekvens. Måste vara "warmup_cosine" eller "steg". "Ingen"
"Steg"
"WarmupCosine"
maxSize Maximal storlek på bilden som ska skalas om innan den matas till stamnätet.
Måste vara ett positivt heltal. Obs! Träningskörning kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
minSize Minsta storlek på bilden som ska skalas om innan den matas till stamnätet.
Måste vara ett positivt heltal. Obs! Träningskörning kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
modelName Namnet på den modell som ska användas för träning.
Mer information om tillgängliga modeller finns i den officiella dokumentationen:
/azure/machine-learning/how-to-auto-train-image-models.
sträng
modelSize Modellstorlek. Måste vara "liten", "medium", "stor" eller "xlarge".
Obs! Träningskörning kan komma in i CUDA OOM om modellstorleken är för stor.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
"ExtraLarge"
"Stor"
"Medel"
"Ingen"
"Liten"
rörelsemängd Värdet för momentum när optimeraren är "sgd". Måste vara en flottör i intervallet [0, 1]. Int
multiSkala Aktivera flera skalningsbilder genom att variera bildstorleken med +/- 50%.
Obs! Träningskörning kan komma in i CUDA OOM om det inte finns tillräckligt med GPU-minne.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
Bool
nesterov Aktivera nesterov när optimeraren är "sgd". Bool
nmsIouThreshold IOU-tröskelvärde som används vid slutsatsdragning i NMS efter bearbetning. Måste vara en flottör i intervallet [0, 1]. Int
numberOfEpochs Antal träningsepoker. Måste vara ett positivt heltal. Int
numberOfWorkers Antal datainläsningsarbetare. Måste vara ett icke-negativt heltal. Int
Optimizer Typ av optimerare. "Adam"
"Adamw"
"Ingen"
"Sgd"
randomSeed Slumpmässigt frö som ska användas vid användning av deterministisk träning. Int
stepLRGamma Värdet för gamma när learning rate scheduler är "step". Måste vara en flottör i intervallet [0, 1]. Int
stepLRStepSize Värdet för stegstorlek när schemaläggaren för inlärningsfrekvens är "steg". Måste vara ett positivt heltal. Int
tileGridSize Rutnätsstorleken som ska användas för att sida vid sida vid varje bild. Obs! TileGridSize får inte vara
Ingen för att aktivera logik för identifiering av små objekt. En sträng som innehåller två heltal i mxn-format.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
tileOverlapRatio Överlappningsförhållande mellan intilliggande paneler i varje dimension. Måste vara flytande i intervallet [0, 1).
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
tilePredictionsNmsThreshold Tröskelvärdet för IOU som ska användas för att utföra NMS vid sammanslagning av förutsägelser från paneler och bilder.
Används i validering/slutsatsdragning. Måste vara flytande i intervallet [0, 1].
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
trainingBatchSize Träningsbatchstorlek. Måste vara ett positivt heltal. Int
validationBatchSize Valideringsbatchstorlek. Måste vara ett positivt heltal. Int
validationIouThreshold Tröskelvärde för IOU som ska användas vid beräkning av valideringsmått. Måste vara flytande i intervallet [0, 1]. Int
validationMetricType Beräkningsmetod för mått som ska användas för valideringsmått. "Coco"
"CocoVoc"
"Ingen"
"Voc"
warmupCosineLRCycles Värdet för cosinincykeln när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara en flottör i intervallet [0, 1]. Int
warmupCosineLRWarmupEpochs Värdet för uppvärmningsepoker när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara ett positivt heltal. Int
weightDecay Värdet för viktförfall när optimeraren är "sgd", "adam" eller "adamw". Måste vara en float i intervallet[0, 1]. Int

ImageModelDistributionSettingsObjectDetection

Namn Beskrivning Värde
amsGradient Aktivera AMSGrad när optimeraren är "adam" eller "adamw". sträng
Stödsystem Inställningar för att använda förhöjda inställningar. sträng
beta1 Värdet för "beta1" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. sträng
beta2 Värdet för "beta2" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. sträng
boxDetectionsPerImage Maximalt antal identifieringar per bild för alla klasser. Måste vara ett positivt heltal.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
boxScoreThreshold Under slutsatsdragningen returnerar du endast förslag med en klassificeringspoäng som är större än
BoxScoreThreshold. Måste vara en float i intervallet[0, 1].
sträng
distribuerad Om distributionsträning ska användas. sträng
earlyStopping Aktivera tidig stopplogik under träning. sträng
earlyStoppingDelay Minsta antal epoker eller valideringsutvärderingar som ska vänta innan den primära måttförbättringen
spåras för tidig stoppning. Måste vara ett positivt heltal.
sträng
earlyStoppingPatience Minsta antal epoker eller valideringsutvärderingar utan primär måttförbättring före
-körningen stoppas. Måste vara ett positivt heltal.
sträng
enableOnnxNormalization Aktivera normalisering vid export av ONNX-modell. sträng
evaluationFrequency Frekvens för att utvärdera valideringsdatauppsättningen för att hämta måttpoäng. Måste vara ett positivt heltal. sträng
gradientAccumulationStep Toningsansamling innebär att du kör ett konfigurerat antal "GradAccumulationStep"-steg utan
uppdatera modellvikterna medan du ackumulerar toningarna i dessa steg och sedan använder
de ackumulerade toningarna för att beräkna viktuppdateringarna. Måste vara ett positivt heltal.
sträng
imageSize Bildstorlek för träning och validering. Måste vara ett positivt heltal.
Obs! Träningskörningen kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
sträng
layerToFreeze Antal lager som ska frysas för modellen. Måste vara ett positivt heltal.
Att till exempel skicka 2 som värde för "seresnext" innebär
frysskikt0 och lager1. En fullständig lista över modeller som stöds och information om lagerfrysning finns i
se: /azure/machine-learning/how-to-auto-train-image-models.
sträng
learningRate Inledande inlärningsfrekvens. Måste vara en flottör i intervallet [0, 1]. sträng
learningRateScheduler Typ av schemaläggare för inlärningsfrekvens. Måste vara "warmup_cosine" eller "steg". sträng
maxSize Maximal storlek på bilden som ska skalas om innan den matas till stamnätet.
Måste vara ett positivt heltal. Obs! Träningskörning kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
minSize Minsta storlek på bilden som ska skalas om innan den matas till stamnätet.
Måste vara ett positivt heltal. Obs! Träningskörning kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
modelName Namnet på den modell som ska användas för träning.
Mer information om tillgängliga modeller finns i den officiella dokumentationen:
/azure/machine-learning/how-to-auto-train-image-models.
sträng
modelSize Modellstorlek. Måste vara "liten", "medium", "stor" eller "xlarge".
Obs! Träningskörning kan komma in i CUDA OOM om modellstorleken är för stor.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
sträng
rörelsemängd Värdet för momentum när optimeraren är "sgd". Måste vara en flottör i intervallet [0, 1]. sträng
multiSkala Aktivera flera skalningsbilder genom att variera bildstorleken med +/- 50%.
Obs! Träningskörning kan komma in i CUDA OOM om det inte finns tillräckligt med GPU-minne.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
sträng
nesterov Aktivera nesterov när optimeraren är "sgd". sträng
nmsIouThreshold IOU-tröskelvärde som används vid slutsatsdragning i NMS efter bearbetning. Måste vara flytande i intervallet [0, 1]. sträng
numberOfEpochs Antal träningsepoker. Måste vara ett positivt heltal. sträng
numberOfWorkers Antal datainläsningsarbetare. Måste vara ett icke-negativt heltal. sträng
Optimizer Typ av optimerare. Måste vara antingen "sgd", "adam" eller "adamw". sträng
randomSeed Slumpmässigt frö som ska användas vid användning av deterministisk träning. sträng
stepLRGamma Värdet för gamma när learning rate scheduler är "step". Måste vara en flottör i intervallet [0, 1]. sträng
stepLRStepSize Värdet för stegstorlek när schemaläggaren för inlärningsfrekvens är "steg". Måste vara ett positivt heltal. sträng
tileGridSize Rutnätsstorleken som ska användas för att sida vid sida vid varje bild. Obs! TileGridSize får inte vara
Ingen för att aktivera logik för identifiering av små objekt. En sträng som innehåller två heltal i mxn-format.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
tileOverlapRatio Överlappningsförhållande mellan intilliggande paneler i varje dimension. Måste vara flytande i intervallet [0, 1).
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
tilePredictionsNmsThreshold Tröskelvärdet för IOU som ska användas för att utföra NMS vid sammanslagning av förutsägelser från paneler och bilder.
Används i validering/slutsatsdragning. Måste vara flytande i intervallet [0, 1].
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
NMS: Icke-maximal undertryckning
sträng
trainingBatchSize Träningsbatchstorlek. Måste vara ett positivt heltal. sträng
validationBatchSize Valideringsbatchstorlek. Måste vara ett positivt heltal. sträng
validationIouThreshold Tröskelvärde för IOU som ska användas vid beräkning av valideringsmått. Måste vara flytande i intervallet [0, 1]. sträng
validationMetricType Beräkningsmetod för mått som ska användas för valideringsmått. Måste vara "none", "coco", "voc" eller "coco_voc". sträng
warmupCosineLRCycles Värdet för cosinincykeln när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara en flottör i intervallet [0, 1]. sträng
warmupCosineLRWarmupEpochs Värdet för uppvärmningsepoker när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara ett positivt heltal. sträng
weightDecay Värdet för viktförfall när optimeraren är "sgd", "adam" eller "adamw". Måste vara en float i intervallet[0, 1]. sträng

ImageObjectDetection

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "ImageObjectDetection" (krävs)
limitSettings [Krävs] Begränsa inställningarna för AutoML-jobbet. ImageLimitSettings (krävs)
modelSettings Inställningar som används för att träna modellen. ImageModelSettingsObjectDetection
primaryMetric Primärt mått för att optimera för den här uppgiften. "MeanAveragePrecision"
searchSpace Sök efter sampling av olika kombinationer av modeller och deras hyperparametrar. ImageModelDistributionSettingsObjectDetection[]
sweepSettings Sopning av modeller och hyperparametrar som sveper relaterade inställningar. ImageSweepSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int

Regression

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "Regression" (krävs)
cvSplitColumnNames Kolumner som ska användas för CVSplit-data. string[]
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. TableVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. TableVerticalLimitSettings
nCrossValidations Antal korsvalideringsdelegeringar som ska tillämpas på träningsdatauppsättningen
när valideringsdatauppsättningen inte har angetts.
NCrossValidations
primaryMetric Primärt mått för regressionsaktivitet. "NormalizedMeanAbsoluteError"
"NormalizedRootMeanSquaredError"
"R2Score"
"SpearmanCorrelation"
testData Testa indata. MLTableJobInput
testDataSize Den del av testdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
trainingSettings Indata för träningsfasen för ett AutoML-jobb. RegressionTrainingSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
weightColumnName Namnet på exempelviktkolumnen. Automatiserad ML stöder en viktad kolumn som indata, vilket gör att rader i data viktas upp eller ned. sträng

RegressionTrainingSettings

Namn Beskrivning Värde
allowedTrainingAlgorithms Tillåtna modeller för regressionsaktivitet. Strängmatris som innehåller något av:
"DecisionTree"
"ElasticNet"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LassoLars"
"LightGBM"
"RandomForest"
"SGD"
"XGBoostRegressor"
blockedTrainingAlgorithms Blockerade modeller för regressionsuppgift. Strängmatris som innehåller något av:
"DecisionTree"
"ElasticNet"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LassoLars"
"LightGBM"
"RandomForest"
"SGD"
"XGBoostRegressor"
enableDnnTraining Aktivera rekommendation för DNN-modeller. Bool
enableModelExplainability Flagga för att aktivera förklaring på bästa modell. Bool
enableOnnxCompatibleModels Flagga för att aktivera onnx-kompatibla modeller. Bool
enableStackEnsemble Aktivera stackensemblekörning. Bool
enableVoteEnsemble Aktivera röstningsensemblekörning. Bool
ensembleModelDownloadTimeout Under VotingEnsemble- och StackEnsemble-modellgenereringen laddas flera anpassade modeller från de tidigare underordnade körningarna ned.
Konfigurera den här parametern med ett högre värde än 300 sekunder om det behövs mer tid.
sträng
stackEnsembleSettings Inställningar för stackensembler för stackensemblekörning. StackEnsembleSettings

Textklassificering

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "TextKlassificering" (krävs)
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. NlpVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. NlpVerticalLimitSettings
primaryMetric Primärt mått för Text-Classification uppgift. "AUCWeighted"
"Noggrannhet"
"AveragePrecisionScoreWeighted"
"NormMacroRecall"
"PrecisionScoreWeighted"
validationData Indata för valideringsdata. MLTableJobInput

NlpVerticalFeaturizationSettings

Namn Beskrivning Värde
datasetLanguage Datamängdsspråk, användbart för textdata. sträng

NlpVerticalLimitSettings

Namn Beskrivning Värde
maxConcurrentTrials Maximalt antal samtidiga AutoML-iterationer. Int
maxTrials Antal AutoML-iterationer. Int
Timeout Tidsgräns för AutoML-jobb. sträng

TextClassificationMultilabel

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "TextClassificationMultilabel" (krävs)
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. NlpVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. NlpVerticalLimitSettings
validationData Indata för valideringsdata. MLTableJobInput

Textner

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "TextNER" (krävs)
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. NlpVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. NlpVerticalLimitSettings
validationData Indata för valideringsdata. MLTableJobInput

Kommandojobb

Namn Beskrivning Värde
jobType [Krävs] Anger typen av jobb. "Kommando" (krävs)
codeId ARM-resurs-ID för kodtillgången. sträng
befallning [Krävs] Kommandot som ska köras vid start av jobbet. T.ex. "python train.py" sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
fördelning Distributionskonfiguration för jobbet. Om detta anges ska det vara en av Mpi, Tensorflow, PyTorch eller null. DistributionKonfiguration
environmentId [Krävs] ARM-resurs-ID för miljöspecifikationen för jobbet. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
environmentVariables Miljövariabler som ingår i jobbet. CommandJobEnvironmentVariables
Ingångar Mappning av indatabindningar som används i jobbet. CommandJobInputs
Gränser Gräns för kommandojobb. CommandJobLimits
Utgångar Mappning av utdatabindningar som används i jobbet. CommandJobOutputs
queueSettings Köinställningar för jobbet QueueSettings
Resurser Beräkningsresurskonfiguration för jobbet. JobResourceConfiguration

DistributionKonfiguration

Namn Beskrivning Värde
distributionType Ange objekttyp Mpi
PyTorch
TensorFlow (krävs)

Mpi

Namn Beskrivning Värde
distributionType [Krävs] Anger typ av distributionsramverk. "Mpi" (krävs)
processCountPerInstance Antal processer per MPI-nod. Int

PyTorch

Namn Beskrivning Värde
distributionType [Krävs] Anger typ av distributionsramverk. "PyTorch" (krävs)
processCountPerInstance Antal processer per nod. Int

TensorFlow

Namn Beskrivning Värde
distributionType [Krävs] Anger typ av distributionsramverk. "TensorFlow" (krävs)
parameterServerCount Antal parameterserveruppgifter. Int
workerCount Antal arbetare. Om det inte anges kommer instansantalet att vara standard. Int

CommandJobEnvironmentVariables

Namn Beskrivning Värde
{anpassad egenskap} sträng

CommandJobInputs

Namn Beskrivning Värde
{anpassad egenskap} JobInput

JobInput

Namn Beskrivning Värde
beskrivning Beskrivning av indata. sträng
jobInputType Ange objekttyp custom_model
literal
mlflow_model
mltable
triton_model
uri_file
uri_folder (krävs)

CustomModelJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "custom_model" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

LiteralJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "literal" (krävs)
värde [Krävs] Literalvärde för indata. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

TritonModelJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "triton_model" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

UriFileJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "uri_file" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

UriFolderJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "uri_folder" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

CommandJobLimits

Namn Beskrivning Värde
jobLimitsType [Krävs] JobLimit-typ. "Kommando"
"Svep" (krävs)
Timeout Den maximala körningstiden i ISO 8601-format, varefter jobbet avbryts. Stöder endast varaktighet med så låg precision som Sekunder. sträng

CommandJobOutputs

Namn Beskrivning Värde
{anpassad egenskap} JobOutput

PipelineJob

Namn Beskrivning Värde
jobType [Krävs] Anger typen av jobb. "Pipeline" (krävs)
Ingångar Indata för pipelinejobbet. PipelineJobInputs
Jobb Jobb konstruerar pipelinejobbet. PipelineJobJobs
Utgångar Utdata för pipelinejobbet PipelineJobOutputs
Inställningar Pipelineinställningar, till exempel ContinueRunOnStepFailure osv. För Bicep kan du använda funktionen any().
sourceJobId ARM-resurs-ID för källjobbet. sträng

PipelineJobInputs

Namn Beskrivning Värde
{anpassad egenskap} JobInput

PipelineJobJobs

Namn Beskrivning Värde
{anpassad egenskap} För Bicep kan du använda funktionen any().

PipelineJobOutputs

Namn Beskrivning Värde
{anpassad egenskap} JobOutput

SweepJob

Namn Beskrivning Värde
jobType [Krävs] Anger typen av jobb. "Svep" (krävs)
earlyTermination Principer för tidig uppsägning gör det möjligt att avbryta dåliga körningar innan de slutförs EarlyTerminationPolicy
Ingångar Mappning av indatabindningar som används i jobbet. SweepJobInputs
Gränser Rensa jobbgräns. SweepJobLimits
objektiv [Krävs] Optimeringsmål. Mål (krävs)
Utgångar Mappning av utdatabindningar som används i jobbet. SweepJobOutputs
queueSettings Köinställningar för jobbet QueueSettings
samplingAlgorithm [Krävs] Algoritmen för hyperparametersampling SamplingAlgorithm (krävs)
searchSpace [Krävs] En ordlista som innehåller varje parameter och dess distribution. Ordlistenyckeln är namnet på parametern För Bicep kan du använda funktionen any(). (krävs)
rättegång [Krävs] Utvärderingskomponentdefinition. TrialComponent (krävs)

SweepJobInputs

Namn Beskrivning Värde
{anpassad egenskap} JobInput

SweepJobLimits

Namn Beskrivning Värde
jobLimitsType [Krävs] JobLimit-typ. "Kommando"
"Svep" (krävs)
maxConcurrentTrials Sopa jobb max samtidiga utvärderingsversioner. Int
maxTotalTrials Sopa jobb max totalt antal utvärderingsversioner. Int
Timeout Den maximala körningstiden i ISO 8601-format, varefter jobbet avbryts. Stöder endast varaktighet med så låg precision som Sekunder. sträng
trialTimeout Rensa timeout-värdet för utvärderingsversionen av jobbet. sträng

Objektiv

Namn Beskrivning Värde
mål [Krävs] Definierar måttmål som stöds för justering av hyperparametrar "Maximera"
"Minimera" (krävs)
primaryMetric [Krävs] Namnet på måttet som ska optimeras. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

SweepJobOutputs

Namn Beskrivning Värde
{anpassad egenskap} JobOutput

SamplingAlgorithm

Namn Beskrivning Värde
samplingAlgorithmType Ange objekttyp Bayesianska
Grid
Slumpmässig (krävs)

BayesianSamplingAlgorithm

Namn Beskrivning Värde
samplingAlgorithmType [Krävs] Algoritmen som används för att generera hyperparametervärden, tillsammans med konfigurationsegenskaper "Bayesian" (krävs)

GridSamplingAlgorithm

Namn Beskrivning Värde
samplingAlgorithmType [Krävs] Algoritmen som används för att generera hyperparametervärden, tillsammans med konfigurationsegenskaper "Rutnät" (krävs)

RandomSamplingAlgorithm

Namn Beskrivning Värde
samplingAlgorithmType [Krävs] Algoritmen som används för att generera hyperparametervärden, tillsammans med konfigurationsegenskaper "Random" (krävs)
regel Den specifika typen av slumpmässig algoritm "Slumpmässigt"
"Sobol"
frö Ett valfritt heltal som ska användas som frö för slumptalsgenerering Int

TrialComponent

Namn Beskrivning Värde
codeId ARM-resurs-ID för kodtillgången. sträng
befallning [Krävs] Kommandot som ska köras vid start av jobbet. T.ex. "python train.py" sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
fördelning Distributionskonfiguration för jobbet. Om detta anges ska det vara en av Mpi, Tensorflow, PyTorch eller null. DistributionKonfiguration
environmentId [Krävs] ARM-resurs-ID för miljöspecifikationen för jobbet. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
environmentVariables Miljövariabler som ingår i jobbet. TrialComponentEnvironmentVariables
Resurser Beräkningsresurskonfiguration för jobbet. JobResourceConfiguration

TrialComponentEnvironmentVariables

Namn Beskrivning Värde
{anpassad egenskap} sträng

CreateMonitorAction

Namn Beskrivning Värde
actionType [Krävs] Anger åtgärdstypen för schemat "CreateMonitor" (krävs)
monitorDefinition [Krävs] Definierar övervakaren. MonitorDefinition (krävs)

MonitorDefinition

Namn Beskrivning Värde
alertNotificationSettings Övervakarens meddelandeinställningar. MonitorNotificationSettings
computeConfiguration [Krävs] ARM-resurs-ID för beräkningsresursen som övervakningsjobbet ska köras på. MonitorComputeConfigurationBase (krävs)
monitoringTarget De entiteter som övervakaren riktar in sig på. MonitoringTarget
Signaler [Krävs] Signalerna som ska övervakas. MonitorDefinitionSignals (krävs)

MonitorNotificationSettings

Namn Beskrivning Värde
emailNotificationSettings E-postinställningarna för AML-meddelanden. MonitorEmailNotificationSettings

MonitorEmailNotificationSettings

Namn Beskrivning Värde
e-postmeddelanden Listan över e-postmottagare som har en begränsning på totalt 499 tecken. string[]

MonitorComputeConfigurationBase

Namn Beskrivning Värde
computeType Ange objekttyp ServerlessSpark- (krävs)

MonitorServerlessSparkCompute

Namn Beskrivning Värde
computeType [Krävs] Anger vilken typ av signal som ska övervakas. "ServerlessSpark" (krävs)
computeIdentity [Krävs] Identitetsschemat som används av spark-jobben som körs på serverlösa Spark. MonitorComputeIdentityBase (krävs)
instanceType [Krävs] Instanstypen som kör Spark-jobbet. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
runtimeVersion [Krävs] Spark-körningsversionen. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = ^[0-9]+\.[0-9]+$

MonitorComputeIdentityBase

Namn Beskrivning Värde
computeIdentityType Ange objekttyp AmlToken
ManagedIdentity (krävs)

AmlTokenComputeIdentity

Namn Beskrivning Värde
computeIdentityType [Krävs] Anger vilken typ av identitet som ska användas i övervakningsjobben. "AmlToken" (krävs)

ManagedComputeIdentity

Namn Beskrivning Värde
computeIdentityType [Krävs] Anger vilken typ av identitet som ska användas i övervakningsjobben. "ManagedIdentity" (krävs)
identitet Den identitet som ska användas av övervakningsjobben. ManagedServiceIdentity

ManagedServiceIdentity

Namn Beskrivning Värde
typ Typ av hanterad tjänstidentitet (där både SystemAssigned- och UserAssigned-typer tillåts). "Ingen"
"SystemAssigned"
"SystemAssigned,UserAssigned"
"UserAssigned" (krävs)
userAssignedIdentities Uppsättningen användartilldelade identiteter som är associerade med resursen. Ordlistenycklarna userAssignedIdentities är ARM-resurs-ID:er i formuläret: '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}. Ordlistevärdena kan vara tomma objekt ({}) i begäranden. UserAssignedIdentiteter

UserAssignedIdentiteter

Namn Beskrivning Värde
{anpassad egenskap} UserAssignedIdentity

UserAssignedIdentity

Det här objektet innehåller inga egenskaper som ska anges under distributionen. Alla egenskaper är ReadOnly.

MonitoringTarget

Namn Beskrivning Värde
deploymentId Referens till distributionstillgången som den här övervakaren riktar in sig på. sträng
modelId Referens till den modelltillgång som den här övervakaren riktar in sig på. sträng
taskType [Krävs] Maskininlärningsaktivitetstypen för den övervakade modellen. "Klassificering"
"Regression" (krävs)

MonitorDefinitionSignals

Namn Beskrivning Värde
{anpassad egenskap} MonitoringSignalBase

MonitoringSignalBase

Namn Beskrivning Värde
notificationTypes Det aktuella meddelandeläget för den här signalen. Strängmatris som innehåller något av:
"AmlNotification"
Egenskaper Egenskapsordlista. Egenskaper kan läggas till, men inte tas bort eller ändras. MonitoringSignalBaseProperties
signalType Ange objekttyp Anpassad
DataDrift
DataQuality
FeatureAttributionDrift
PredictionDrift (krävs)

MonitoringSignalBaseProperties

Namn Beskrivning Värde
{anpassad egenskap} sträng

CustomMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "Anpassad" (krävs)
componentId [Krävs] Referens till komponenttillgången som används för att beräkna anpassade mått. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
inputAssets Övervaka tillgångar att ta som indata. Nyckeln är komponentens portnamn för indata, värdet är datatillgången. CustomMonitoringSignalInputAssets
Ingångar Extra komponentparametrar att ta som indata. Nyckeln är det komponentliterala indataportnamnet, värdet är parametervärdet. CustomMonitoringSignalInputs
metricThresholds [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. CustomMetricThreshold[] (krävs)

CustomMonitoringSignalInputAssets

Namn Beskrivning Värde
{anpassad egenskap} MonitoringInputDataBase

MonitoringInputDataBase

Namn Beskrivning Värde
Kolumner Mappning av kolumnnamn till särskilda användningsområden. MonitoringInputDataBaseColumns
dataContext Datakällans kontextmetadata. sträng
jobInputType [Krävs] Anger typen av jobb. "custom_model"
"literal"
"mlflow_model"
"mltable"
"triton_model"
"uri_file"
"uri_folder" (krävs)
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
inputDataType Ange objekttyp fast
rullande
Statisk (krävs)

MonitoringInputDataBaseColumns

Namn Beskrivning Värde
{anpassad egenskap} sträng

FixedInputData

Namn Beskrivning Värde
inputDataType [Krävs] Anger vilken typ av signal som ska övervakas. "Fast" (krävs)

RollingInputData

Namn Beskrivning Värde
inputDataType [Krävs] Anger vilken typ av signal som ska övervakas. "Rullande" (krävs)
preprocessingComponentId Referens till komponenttillgången som används för att förbearbeta data. sträng
windowOffset [Krävs] Tidsförskjutningen mellan slutet av datafönstret och övervakarens aktuella körningstid. sträng (krävs)
windowSize [Krävs] Storleken på det rullande datafönstret. sträng (krävs)

StaticInputData

Namn Beskrivning Värde
inputDataType [Krävs] Anger vilken typ av signal som ska övervakas. "Statisk" (krävs)
preprocessingComponentId Referens till komponenttillgången som används för att förbearbeta data. sträng
windowEnd [Krävs] Slutdatumet för datafönstret. sträng (krävs)
windowStart [Krävs] Startdatumet för datafönstret. sträng (krävs)

CustomMonitoringSignalInputs

Namn Beskrivning Värde
{anpassad egenskap} JobInput

CustomMetricThreshold

Namn Beskrivning Värde
metrisk [Krävs] Det användardefinierade mått som ska beräknas. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold

MonitoringThreshold

Namn Beskrivning Värde
värde Tröskelvärdet. Om värdet är null är standardinställningen beroende av måtttypen. Int

DataDriftMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "DataDrift" (krävs)
featureDataTypeOverride En ordlista som mappar funktionsnamn till respektive datatyper. DataDriftMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings Inställningarna för funktionsvikt för databehandling. FeatureImportanceSettings
Funktioner Funktionsfiltret som identifierar vilken funktion som ska beräkna överdrift. MonitoringFeatureFilterBase
metricThresholds [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. DataDriftMetricThresholdBase[] (krävs)
productionData [Krävs] De data som avdriften beräknas för. MonitoringInputDataBase (krävs)
referenceData [Krävs] Data som ska beräknas avdrift mot. MonitoringInputDataBase (krävs)

DataDriftMonitoringSignalFeatureDataTypeOverride

Namn Beskrivning Värde
{anpassad egenskap} "Kategorisk"
"Numeriskt"

FeatureImportanceSettings

Namn Beskrivning Värde
läge Funktionssättet för beräkning av funktionsvikt. "Inaktiverad"
"Aktiverad"
targetColumn Namnet på målkolumnen i indatatillgången. sträng

MonitoringFeatureFilterBase

Namn Beskrivning Värde
filterType Ange objekttyp AllFeatures
FeatureSubset
TopNByAttribution (krävs)

Allafeatures

Namn Beskrivning Värde
filterType [Krävs] Anger det funktionsfilter som ska användas när du väljer funktioner för att beräkna mått över. "AllFeatures" (krävs)

FeatureSubset

Namn Beskrivning Värde
filterType [Krävs] Anger det funktionsfilter som ska användas när du väljer funktioner för att beräkna mått över. "FeatureSubset" (krävs)
Funktioner [Krävs] Listan över funktioner som ska inkluderas. string[] (krävs)

TopNFeaturesByAttribution

Namn Beskrivning Värde
filterType [Krävs] Anger det funktionsfilter som ska användas när du väljer funktioner för att beräkna mått över. "TopNByAttribution" (krävs)
topp Antalet viktigaste funktioner som ska inkluderas. Int

DataDriftMetricThresholdBase

Namn Beskrivning Värde
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold
Datatyp Ange objekttyp kategorisk
numeriska (krävs)

CategoricalDataDriftMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Kategorisk" (krävs)
metrisk [Krävs] Det kategoriska dataavvikelsemåttet som ska beräknas. "JensenShannonDistance"
"PearsonsChiSquaredTest"
"PopulationStabilityIndex" (krävs)

NumeriskaDataDriftMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Numeriskt" (krävs)
metrisk [Krävs] Det numeriska dataavvikelsemåttet som ska beräknas. "JensenShannonDistance"
"NormalizedWassersteinDistance"
"PopulationStabilityIndex"
"TwoSampleKolmogorovSmirnovTest" (krävs)

DataQualityMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "DataQuality" (krävs)
featureDataTypeOverride En ordlista som mappar funktionsnamn till respektive datatyper. DataQualityMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings Inställningarna för funktionsvikt för databehandling. FeatureImportanceSettings
Funktioner Funktionerna för att beräkna drift över. MonitoringFeatureFilterBase
metricThresholds [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. DataQualityMetricThresholdBase[] (krävs)
productionData [Krävs] De data som produceras av produktionstjänsten som driften beräknas för. MonitoringInputDataBase (krävs)
referenceData [Krävs] Data som ska beräknas avdrift mot. MonitoringInputDataBase (krävs)

DataQualityMonitoringSignalFeatureDataTypeOverride

Namn Beskrivning Värde
{anpassad egenskap} "Kategorisk"
"Numeriskt"

DataQualityMetricThresholdBase

Namn Beskrivning Värde
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold
Datatyp Ange objekttyp kategorisk
numeriska (krävs)

CategoricalDataQualityMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Kategorisk" (krävs)
metrisk [Krävs] Det kategoriska datakvalitetsmåttet som ska beräknas. "DataTypeErrorRate"
"NullValueRate"
"OutOfBoundsRate" (krävs)

NumeriskadataQualityMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Numeriskt" (krävs)
metrisk [Krävs] Det numeriska datakvalitetsmåttet som ska beräknas. "DataTypeErrorRate"
"NullValueRate"
"OutOfBoundsRate" (krävs)

FeatureAttributionDriftMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "FeatureAttributionDrift" (krävs)
featureDataTypeOverride En ordlista som mappar funktionsnamn till respektive datatyper. FeatureAttributionDriftMonitoringSignalFeatureDataTy...
featureImportanceSettings [Krävs] Inställningarna för funktionsvikt för databehandling. FeatureImportanceSettings (krävs)
metricThreshold [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. FeatureAttributionMetricThreshold (krävs)
productionData [Krävs] De data som avdriften beräknas för. MonitoringInputDataBase[] (krävs)
referenceData [Krävs] Data som ska beräknas avdrift mot. MonitoringInputDataBase (krävs)

FeatureAttributionDriftMonitoringSignalFeatureDataTy...

Namn Beskrivning Värde
{anpassad egenskap} "Kategorisk"
"Numeriskt"

FeatureAttributionMetricThreshold

Namn Beskrivning Värde
metrisk [Krävs] Måttet för funktionstillskrivning som ska beräknas. "NormalizedDiscountedCumulativeGain" (krävs)
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold

PredictionDriftMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "PredictionDrift" (krävs)
featureDataTypeOverride En ordlista som mappar funktionsnamn till respektive datatyper. PredictionDriftMonitoringSignalFeatureDataTypeOverri...
metricThresholds [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. PredictionDriftMetricThresholdBase[] (krävs)
productionData [Krävs] De data som avdriften beräknas för. MonitoringInputDataBase (krävs)
referenceData [Krävs] Data som ska beräknas avdrift mot. MonitoringInputDataBase (krävs)

PredictionDriftMonitoringSignalFeatureDataTypeOverri...

Namn Beskrivning Värde
{anpassad egenskap} "Kategorisk"
"Numeriskt"

PredictionDriftMetricThresholdBase

Namn Beskrivning Värde
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold
Datatyp Ange objekttyp kategorisk
numeriska (krävs)

CategoricalPredictionDriftMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Kategorisk" (krävs)
metrisk [Krävs] Det kategoriska förutsägelseavvikelsemåttet som ska beräknas. "JensenShannonDistance"
"PearsonsChiSquaredTest"
"PopulationStabilityIndex" (krävs)

NumerisktPredictionDriftMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Numeriskt" (krävs)
metrisk [Krävs] Det numeriska förutsägelseavvikelsemåttet som ska beräknas. "JensenShannonDistance"
"NormalizedWassersteinDistance"
"PopulationStabilityIndex"
"TwoSampleKolmogorovSmirnovTest" (krävs)

EndpointScheduleAction

Namn Beskrivning Värde
actionType [Krävs] Anger åtgärdstypen för schemat "InvokeBatchEndpoint" (krävs)
endpointInvocationDefinition [Krävs] Definierar information om schemalägg åtgärdsdefinition.
{se href="TBD" /}

För Bicep kan du använda funktionen any(). (krävs)

TriggerBase

Namn Beskrivning Värde
endTime Anger sluttid för schemat i ISO 8601, men utan UTC-förskjutning. Se https://en.wikipedia.org/wiki/ISO_8601.
Omkommenterat format skulle vara "2022-06-01T00:00:01"
Om det inte finns körs schemat på obestämd tid
sträng
startTime Anger starttid för schemat i ISO 8601-format, men utan UTC-förskjutning. sträng
timeZone Anger tidszon där schemat körs.
Tidszon bör följa Windows tidszonsformat. Se: /windows-hardware/manufacture/desktop/default-time-zones/>
sträng
triggerType Ange objekttyp Cron
återkommande (krävs)

CronTrigger

Namn Beskrivning Värde
triggerType [Krävs] "Cron" (krävs)
uttryck [Krävs] Anger cron-uttryck för schema.
Uttrycket bör följa formatet NCronTab.
sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

RecurrenceTrigger

Namn Beskrivning Värde
endTime Anger sluttid för schemat i ISO 8601, men utan UTC-förskjutning. Se https://en.wikipedia.org/wiki/ISO_8601.
Omkommenterat format skulle vara "2022-06-01T00:00:01"
Om det inte finns körs schemat på obestämd tid
sträng
frekvens [Krävs] Frekvensen för att utlösa schemat. "Dag"
"Timme"
"Minut"
"Månad"
"Vecka" (krävs)
intervall [Krävs] Anger schemaintervall tillsammans med frekvens int (krävs)
schema Upprepningsschemat. RecurrenceSchedule
startTime Anger starttid för schemat i ISO 8601-format, men utan UTC-förskjutning. sträng
timeZone Anger tidszon där schemat körs.
Tidszon bör följa Windows tidszonsformat. Se: /windows-hardware/manufacture/desktop/default-time-zones
sträng
triggerType [Krävs] "Cron"
"Upprepning" (krävs)

RecurrenceSchedule

Namn Beskrivning Värde
Timmar [Krävs] Lista över timmar för schemat. int[] (krävs)
protokoll [Krävs] Lista över minuter för schemat. int[] (krävs)
monthDays Lista över månadsdagar för schemat int[]
Vardagar Lista över dagar för schemat. Strängmatris som innehåller något av:
"Fredag"
"Måndag"
"Lördag"
"Söndag"
"Torsdag"
"Tisdag"
"Onsdag"

Resursdefinition för ARM-mall

Resurstypen arbetsytor/scheman kan distribueras med åtgärder som mål:

En lista över ändrade egenskaper i varje API-version finns i ändringsloggen.

Resursformat

Om du vill skapa en Microsoft.MachineLearningServices/workspaces/schedules-resurs lägger du till följande JSON i mallen.

{
  "type": "Microsoft.MachineLearningServices/workspaces/schedules",
  "apiVersion": "2023-10-01",
  "name": "string",
  "properties": {
    "action": {
      "actionType": "string"
      // For remaining properties, see ScheduleActionBase objects
    },
    "description": "string",
    "displayName": "string",
    "isEnabled": "bool",
    "properties": {
      "{customized property}": "string"
    },
    "tags": {},
    "trigger": {
      "endTime": "string",
      "startTime": "string",
      "timeZone": "string",
      "triggerType": "string"
      // For remaining properties, see TriggerBase objects
    }
  }
}

ScheduleActionBase-objekt

Ange egenskapen actionType för att ange typ av objekt.

För CreateJobanvänder du:

  "actionType": "CreateJob",
  "jobDefinition": {
    "componentId": "string",
    "computeId": "string",
    "description": "string",
    "displayName": "string",
    "experimentName": "string",
    "identity": {
      "identityType": "string"
      // For remaining properties, see IdentityConfiguration objects
    },
    "isArchived": "bool",
    "properties": {
      "{customized property}": "string"
    },
    "services": {
      "{customized property}": {
        "endpoint": "string",
        "jobServiceType": "string",
        "nodes": {
          "nodesValueType": "string"
          // For remaining properties, see Nodes objects
        },
        "port": "int",
        "properties": {
          "{customized property}": "string"
        }
      }
    },
    "tags": {},
    "jobType": "string"
    // For remaining properties, see JobBaseProperties objects
  }

För CreateMonitoranvänder du:

  "actionType": "CreateMonitor",
  "monitorDefinition": {
    "alertNotificationSettings": {
      "emailNotificationSettings": {
        "emails": [ "string" ]
      }
    },
    "computeConfiguration": {
      "computeType": "string"
      // For remaining properties, see MonitorComputeConfigurationBase objects
    },
    "monitoringTarget": {
      "deploymentId": "string",
      "modelId": "string",
      "taskType": "string"
    },
    "signals": {
      "{customized property}": {
        "notificationTypes": "AmlNotification",
        "properties": {
          "{customized property}": "string"
        },
        "signalType": "string"
        // For remaining properties, see MonitoringSignalBase objects
      }
    }
  }

För InvokeBatchEndpointanvänder du:

  "actionType": "InvokeBatchEndpoint",
  "endpointInvocationDefinition": {}

JobBaseProperties-objekt

Ange egenskapen jobType för att ange typ av objekt.

För AutoML-använder du:

  "jobType": "AutoML",
  "environmentId": "string",
  "environmentVariables": {
    "{customized property}": "string"
  },
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  },
  "queueSettings": {
    "jobTier": "string"
  },
  "resources": {
    "dockerArgs": "string",
    "instanceCount": "int",
    "instanceType": "string",
    "properties": {
      "{customized property}": {}
    },
    "shmSize": "string"
  },
  "taskDetails": {
    "logVerbosity": "string",
    "targetColumnName": "string",
    "trainingData": {
      "description": "string",
      "jobInputType": "string",
      "mode": "string",
      "uri": "string"
    },
    "taskType": "string"
    // For remaining properties, see AutoMLVertical objects
  }

För Kommandoanvänder du:

  "jobType": "Command",
  "codeId": "string",
  "command": "string",
  "distribution": {
    "distributionType": "string"
    // For remaining properties, see DistributionConfiguration objects
  },
  "environmentId": "string",
  "environmentVariables": {
    "{customized property}": "string"
  },
  "inputs": {
    "{customized property}": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    }
  },
  "limits": {
    "jobLimitsType": "string",
    "timeout": "string"
  },
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  },
  "queueSettings": {
    "jobTier": "string"
  },
  "resources": {
    "dockerArgs": "string",
    "instanceCount": "int",
    "instanceType": "string",
    "properties": {
      "{customized property}": {}
    },
    "shmSize": "string"
  }

För Pipelineanvänder du:

  "jobType": "Pipeline",
  "inputs": {
    "{customized property}": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    }
  },
  "jobs": {
    "{customized property}": {}
  },
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  },
  "settings": {},
  "sourceJobId": "string"

För Svepanvänder du:

  "jobType": "Sweep",
  "earlyTermination": {
    "delayEvaluation": "int",
    "evaluationInterval": "int",
    "policyType": "string"
    // For remaining properties, see EarlyTerminationPolicy objects
  },
  "inputs": {
    "{customized property}": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    }
  },
  "limits": {
    "jobLimitsType": "string",
    "maxConcurrentTrials": "int",
    "maxTotalTrials": "int",
    "timeout": "string",
    "trialTimeout": "string"
  },
  "objective": {
    "goal": "string",
    "primaryMetric": "string"
  },
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  },
  "queueSettings": {
    "jobTier": "string"
  },
  "samplingAlgorithm": {
    "samplingAlgorithmType": "string"
    // For remaining properties, see SamplingAlgorithm objects
  },
  "searchSpace": {},
  "trial": {
    "codeId": "string",
    "command": "string",
    "distribution": {
      "distributionType": "string"
      // For remaining properties, see DistributionConfiguration objects
    },
    "environmentId": "string",
    "environmentVariables": {
      "{customized property}": "string"
    },
    "resources": {
      "dockerArgs": "string",
      "instanceCount": "int",
      "instanceType": "string",
      "properties": {
        "{customized property}": {}
      },
      "shmSize": "string"
    }
  }

IdentityConfiguration-objekt

Ange egenskapen identityType för att ange typ av objekt.

För AMLTokenanvänder du:

  "identityType": "AMLToken"

För Managedanvänder du:

  "identityType": "Managed",
  "clientId": "string",
  "objectId": "string",
  "resourceId": "string"

För UserIdentityanvänder du:

  "identityType": "UserIdentity"

Nodobjekt

Ange egenskapen nodesValueType för att ange typ av objekt.

För Allaanvänder du:

  "nodesValueType": "All"

JobOutput-objekt

Ange egenskapen jobOutputType för att ange typ av objekt.

För custom_modelanvänder du:

  "jobOutputType": "custom_model",
  "mode": "string",
  "uri": "string"

För mlflow_modelanvänder du:

  "jobOutputType": "mlflow_model",
  "mode": "string",
  "uri": "string"

För mltableanvänder du:

  "jobOutputType": "mltable",
  "mode": "string",
  "uri": "string"

För triton_modelanvänder du:

  "jobOutputType": "triton_model",
  "mode": "string",
  "uri": "string"

För uri_fileanvänder du:

  "jobOutputType": "uri_file",
  "mode": "string",
  "uri": "string"

För uri_folderanvänder du:

  "jobOutputType": "uri_folder",
  "mode": "string",
  "uri": "string"

AutoMLVertical-objekt

Ange egenskapen taskType för att ange typ av objekt.

För Klassificeringanvänder du:

  "taskType": "Classification",
  "cvSplitColumnNames": [ "string" ],
  "featurizationSettings": {
    "blockedTransformers": [ "string" ],
    "columnNameAndTypes": {
      "{customized property}": "string"
    },
    "datasetLanguage": "string",
    "enableDnnFeaturization": "bool",
    "mode": "string",
    "transformerParams": {
      "{customized property}": [
        {
          "fields": [ "string" ],
          "parameters": {}
        }
      ]
    }
  },
  "limitSettings": {
    "enableEarlyTermination": "bool",
    "exitScore": "int",
    "maxConcurrentTrials": "int",
    "maxCoresPerTrial": "int",
    "maxTrials": "int",
    "timeout": "string",
    "trialTimeout": "string"
  },
  "nCrossValidations": {
    "mode": "string"
    // For remaining properties, see NCrossValidations objects
  },
  "positiveLabel": "string",
  "primaryMetric": "string",
  "testData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  },
  "testDataSize": "int",
  "trainingSettings": {
    "allowedTrainingAlgorithms": [ "string" ],
    "blockedTrainingAlgorithms": [ "string" ],
    "enableDnnTraining": "bool",
    "enableModelExplainability": "bool",
    "enableOnnxCompatibleModels": "bool",
    "enableStackEnsemble": "bool",
    "enableVoteEnsemble": "bool",
    "ensembleModelDownloadTimeout": "string",
    "stackEnsembleSettings": {
      "stackMetaLearnerKWargs": {},
      "stackMetaLearnerTrainPercentage": "int",
      "stackMetaLearnerType": "string"
    }
  },
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  },
  "validationDataSize": "int",
  "weightColumnName": "string"

För Prognostiseringanvänder du:

  "taskType": "Forecasting",
  "cvSplitColumnNames": [ "string" ],
  "featurizationSettings": {
    "blockedTransformers": [ "string" ],
    "columnNameAndTypes": {
      "{customized property}": "string"
    },
    "datasetLanguage": "string",
    "enableDnnFeaturization": "bool",
    "mode": "string",
    "transformerParams": {
      "{customized property}": [
        {
          "fields": [ "string" ],
          "parameters": {}
        }
      ]
    }
  },
  "forecastingSettings": {
    "countryOrRegionForHolidays": "string",
    "cvStepSize": "int",
    "featureLags": "string",
    "forecastHorizon": {
      "mode": "string"
      // For remaining properties, see ForecastHorizon objects
    },
    "frequency": "string",
    "seasonality": {
      "mode": "string"
      // For remaining properties, see Seasonality objects
    },
    "shortSeriesHandlingConfig": "string",
    "targetAggregateFunction": "string",
    "targetLags": {
      "mode": "string"
      // For remaining properties, see TargetLags objects
    },
    "targetRollingWindowSize": {
      "mode": "string"
      // For remaining properties, see TargetRollingWindowSize objects
    },
    "timeColumnName": "string",
    "timeSeriesIdColumnNames": [ "string" ],
    "useStl": "string"
  },
  "limitSettings": {
    "enableEarlyTermination": "bool",
    "exitScore": "int",
    "maxConcurrentTrials": "int",
    "maxCoresPerTrial": "int",
    "maxTrials": "int",
    "timeout": "string",
    "trialTimeout": "string"
  },
  "nCrossValidations": {
    "mode": "string"
    // For remaining properties, see NCrossValidations objects
  },
  "primaryMetric": "string",
  "testData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  },
  "testDataSize": "int",
  "trainingSettings": {
    "allowedTrainingAlgorithms": [ "string" ],
    "blockedTrainingAlgorithms": [ "string" ],
    "enableDnnTraining": "bool",
    "enableModelExplainability": "bool",
    "enableOnnxCompatibleModels": "bool",
    "enableStackEnsemble": "bool",
    "enableVoteEnsemble": "bool",
    "ensembleModelDownloadTimeout": "string",
    "stackEnsembleSettings": {
      "stackMetaLearnerKWargs": {},
      "stackMetaLearnerTrainPercentage": "int",
      "stackMetaLearnerType": "string"
    }
  },
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  },
  "validationDataSize": "int",
  "weightColumnName": "string"

För ImageClassificationanvänder du:

  "taskType": "ImageClassification",
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxTrials": "int",
    "timeout": "string"
  },
  "modelSettings": {
    "advancedSettings": "string",
    "amsGradient": "bool",
    "augmentations": "string",
    "beta1": "int",
    "beta2": "int",
    "checkpointFrequency": "int",
    "checkpointModel": {
      "description": "string",
      "jobInputType": "string",
      "mode": "string",
      "uri": "string"
    },
    "checkpointRunId": "string",
    "distributed": "bool",
    "earlyStopping": "bool",
    "earlyStoppingDelay": "int",
    "earlyStoppingPatience": "int",
    "enableOnnxNormalization": "bool",
    "evaluationFrequency": "int",
    "gradientAccumulationStep": "int",
    "layersToFreeze": "int",
    "learningRate": "int",
    "learningRateScheduler": "string",
    "modelName": "string",
    "momentum": "int",
    "nesterov": "bool",
    "numberOfEpochs": "int",
    "numberOfWorkers": "int",
    "optimizer": "string",
    "randomSeed": "int",
    "stepLRGamma": "int",
    "stepLRStepSize": "int",
    "trainingBatchSize": "int",
    "trainingCropSize": "int",
    "validationBatchSize": "int",
    "validationCropSize": "int",
    "validationResizeSize": "int",
    "warmupCosineLRCycles": "int",
    "warmupCosineLRWarmupEpochs": "int",
    "weightDecay": "int",
    "weightedLoss": "int"
  },
  "primaryMetric": "string",
  "searchSpace": [
    {
      "amsGradient": "string",
      "augmentations": "string",
      "beta1": "string",
      "beta2": "string",
      "distributed": "string",
      "earlyStopping": "string",
      "earlyStoppingDelay": "string",
      "earlyStoppingPatience": "string",
      "enableOnnxNormalization": "string",
      "evaluationFrequency": "string",
      "gradientAccumulationStep": "string",
      "layersToFreeze": "string",
      "learningRate": "string",
      "learningRateScheduler": "string",
      "modelName": "string",
      "momentum": "string",
      "nesterov": "string",
      "numberOfEpochs": "string",
      "numberOfWorkers": "string",
      "optimizer": "string",
      "randomSeed": "string",
      "stepLRGamma": "string",
      "stepLRStepSize": "string",
      "trainingBatchSize": "string",
      "trainingCropSize": "string",
      "validationBatchSize": "string",
      "validationCropSize": "string",
      "validationResizeSize": "string",
      "warmupCosineLRCycles": "string",
      "warmupCosineLRWarmupEpochs": "string",
      "weightDecay": "string",
      "weightedLoss": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  },
  "validationDataSize": "int"

För ImageClassificationMultilabelanvänder du:

  "taskType": "ImageClassificationMultilabel",
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxTrials": "int",
    "timeout": "string"
  },
  "modelSettings": {
    "advancedSettings": "string",
    "amsGradient": "bool",
    "augmentations": "string",
    "beta1": "int",
    "beta2": "int",
    "checkpointFrequency": "int",
    "checkpointModel": {
      "description": "string",
      "jobInputType": "string",
      "mode": "string",
      "uri": "string"
    },
    "checkpointRunId": "string",
    "distributed": "bool",
    "earlyStopping": "bool",
    "earlyStoppingDelay": "int",
    "earlyStoppingPatience": "int",
    "enableOnnxNormalization": "bool",
    "evaluationFrequency": "int",
    "gradientAccumulationStep": "int",
    "layersToFreeze": "int",
    "learningRate": "int",
    "learningRateScheduler": "string",
    "modelName": "string",
    "momentum": "int",
    "nesterov": "bool",
    "numberOfEpochs": "int",
    "numberOfWorkers": "int",
    "optimizer": "string",
    "randomSeed": "int",
    "stepLRGamma": "int",
    "stepLRStepSize": "int",
    "trainingBatchSize": "int",
    "trainingCropSize": "int",
    "validationBatchSize": "int",
    "validationCropSize": "int",
    "validationResizeSize": "int",
    "warmupCosineLRCycles": "int",
    "warmupCosineLRWarmupEpochs": "int",
    "weightDecay": "int",
    "weightedLoss": "int"
  },
  "primaryMetric": "string",
  "searchSpace": [
    {
      "amsGradient": "string",
      "augmentations": "string",
      "beta1": "string",
      "beta2": "string",
      "distributed": "string",
      "earlyStopping": "string",
      "earlyStoppingDelay": "string",
      "earlyStoppingPatience": "string",
      "enableOnnxNormalization": "string",
      "evaluationFrequency": "string",
      "gradientAccumulationStep": "string",
      "layersToFreeze": "string",
      "learningRate": "string",
      "learningRateScheduler": "string",
      "modelName": "string",
      "momentum": "string",
      "nesterov": "string",
      "numberOfEpochs": "string",
      "numberOfWorkers": "string",
      "optimizer": "string",
      "randomSeed": "string",
      "stepLRGamma": "string",
      "stepLRStepSize": "string",
      "trainingBatchSize": "string",
      "trainingCropSize": "string",
      "validationBatchSize": "string",
      "validationCropSize": "string",
      "validationResizeSize": "string",
      "warmupCosineLRCycles": "string",
      "warmupCosineLRWarmupEpochs": "string",
      "weightDecay": "string",
      "weightedLoss": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  },
  "validationDataSize": "int"

För ImageInstanceSegmentationanvänder du:

  "taskType": "ImageInstanceSegmentation",
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxTrials": "int",
    "timeout": "string"
  },
  "modelSettings": {
    "advancedSettings": "string",
    "amsGradient": "bool",
    "augmentations": "string",
    "beta1": "int",
    "beta2": "int",
    "boxDetectionsPerImage": "int",
    "boxScoreThreshold": "int",
    "checkpointFrequency": "int",
    "checkpointModel": {
      "description": "string",
      "jobInputType": "string",
      "mode": "string",
      "uri": "string"
    },
    "checkpointRunId": "string",
    "distributed": "bool",
    "earlyStopping": "bool",
    "earlyStoppingDelay": "int",
    "earlyStoppingPatience": "int",
    "enableOnnxNormalization": "bool",
    "evaluationFrequency": "int",
    "gradientAccumulationStep": "int",
    "imageSize": "int",
    "layersToFreeze": "int",
    "learningRate": "int",
    "learningRateScheduler": "string",
    "maxSize": "int",
    "minSize": "int",
    "modelName": "string",
    "modelSize": "string",
    "momentum": "int",
    "multiScale": "bool",
    "nesterov": "bool",
    "nmsIouThreshold": "int",
    "numberOfEpochs": "int",
    "numberOfWorkers": "int",
    "optimizer": "string",
    "randomSeed": "int",
    "stepLRGamma": "int",
    "stepLRStepSize": "int",
    "tileGridSize": "string",
    "tileOverlapRatio": "int",
    "tilePredictionsNmsThreshold": "int",
    "trainingBatchSize": "int",
    "validationBatchSize": "int",
    "validationIouThreshold": "int",
    "validationMetricType": "string",
    "warmupCosineLRCycles": "int",
    "warmupCosineLRWarmupEpochs": "int",
    "weightDecay": "int"
  },
  "primaryMetric": "MeanAveragePrecision",
  "searchSpace": [
    {
      "amsGradient": "string",
      "augmentations": "string",
      "beta1": "string",
      "beta2": "string",
      "boxDetectionsPerImage": "string",
      "boxScoreThreshold": "string",
      "distributed": "string",
      "earlyStopping": "string",
      "earlyStoppingDelay": "string",
      "earlyStoppingPatience": "string",
      "enableOnnxNormalization": "string",
      "evaluationFrequency": "string",
      "gradientAccumulationStep": "string",
      "imageSize": "string",
      "layersToFreeze": "string",
      "learningRate": "string",
      "learningRateScheduler": "string",
      "maxSize": "string",
      "minSize": "string",
      "modelName": "string",
      "modelSize": "string",
      "momentum": "string",
      "multiScale": "string",
      "nesterov": "string",
      "nmsIouThreshold": "string",
      "numberOfEpochs": "string",
      "numberOfWorkers": "string",
      "optimizer": "string",
      "randomSeed": "string",
      "stepLRGamma": "string",
      "stepLRStepSize": "string",
      "tileGridSize": "string",
      "tileOverlapRatio": "string",
      "tilePredictionsNmsThreshold": "string",
      "trainingBatchSize": "string",
      "validationBatchSize": "string",
      "validationIouThreshold": "string",
      "validationMetricType": "string",
      "warmupCosineLRCycles": "string",
      "warmupCosineLRWarmupEpochs": "string",
      "weightDecay": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  },
  "validationDataSize": "int"

För ImageObjectDetectionanvänder du:

  "taskType": "ImageObjectDetection",
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxTrials": "int",
    "timeout": "string"
  },
  "modelSettings": {
    "advancedSettings": "string",
    "amsGradient": "bool",
    "augmentations": "string",
    "beta1": "int",
    "beta2": "int",
    "boxDetectionsPerImage": "int",
    "boxScoreThreshold": "int",
    "checkpointFrequency": "int",
    "checkpointModel": {
      "description": "string",
      "jobInputType": "string",
      "mode": "string",
      "uri": "string"
    },
    "checkpointRunId": "string",
    "distributed": "bool",
    "earlyStopping": "bool",
    "earlyStoppingDelay": "int",
    "earlyStoppingPatience": "int",
    "enableOnnxNormalization": "bool",
    "evaluationFrequency": "int",
    "gradientAccumulationStep": "int",
    "imageSize": "int",
    "layersToFreeze": "int",
    "learningRate": "int",
    "learningRateScheduler": "string",
    "maxSize": "int",
    "minSize": "int",
    "modelName": "string",
    "modelSize": "string",
    "momentum": "int",
    "multiScale": "bool",
    "nesterov": "bool",
    "nmsIouThreshold": "int",
    "numberOfEpochs": "int",
    "numberOfWorkers": "int",
    "optimizer": "string",
    "randomSeed": "int",
    "stepLRGamma": "int",
    "stepLRStepSize": "int",
    "tileGridSize": "string",
    "tileOverlapRatio": "int",
    "tilePredictionsNmsThreshold": "int",
    "trainingBatchSize": "int",
    "validationBatchSize": "int",
    "validationIouThreshold": "int",
    "validationMetricType": "string",
    "warmupCosineLRCycles": "int",
    "warmupCosineLRWarmupEpochs": "int",
    "weightDecay": "int"
  },
  "primaryMetric": "MeanAveragePrecision",
  "searchSpace": [
    {
      "amsGradient": "string",
      "augmentations": "string",
      "beta1": "string",
      "beta2": "string",
      "boxDetectionsPerImage": "string",
      "boxScoreThreshold": "string",
      "distributed": "string",
      "earlyStopping": "string",
      "earlyStoppingDelay": "string",
      "earlyStoppingPatience": "string",
      "enableOnnxNormalization": "string",
      "evaluationFrequency": "string",
      "gradientAccumulationStep": "string",
      "imageSize": "string",
      "layersToFreeze": "string",
      "learningRate": "string",
      "learningRateScheduler": "string",
      "maxSize": "string",
      "minSize": "string",
      "modelName": "string",
      "modelSize": "string",
      "momentum": "string",
      "multiScale": "string",
      "nesterov": "string",
      "nmsIouThreshold": "string",
      "numberOfEpochs": "string",
      "numberOfWorkers": "string",
      "optimizer": "string",
      "randomSeed": "string",
      "stepLRGamma": "string",
      "stepLRStepSize": "string",
      "tileGridSize": "string",
      "tileOverlapRatio": "string",
      "tilePredictionsNmsThreshold": "string",
      "trainingBatchSize": "string",
      "validationBatchSize": "string",
      "validationIouThreshold": "string",
      "validationMetricType": "string",
      "warmupCosineLRCycles": "string",
      "warmupCosineLRWarmupEpochs": "string",
      "weightDecay": "string"
    }
  ],
  "sweepSettings": {
    "earlyTermination": {
      "delayEvaluation": "int",
      "evaluationInterval": "int",
      "policyType": "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    },
    "samplingAlgorithm": "string"
  },
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  },
  "validationDataSize": "int"

För Regressionanvänder du:

  "taskType": "Regression",
  "cvSplitColumnNames": [ "string" ],
  "featurizationSettings": {
    "blockedTransformers": [ "string" ],
    "columnNameAndTypes": {
      "{customized property}": "string"
    },
    "datasetLanguage": "string",
    "enableDnnFeaturization": "bool",
    "mode": "string",
    "transformerParams": {
      "{customized property}": [
        {
          "fields": [ "string" ],
          "parameters": {}
        }
      ]
    }
  },
  "limitSettings": {
    "enableEarlyTermination": "bool",
    "exitScore": "int",
    "maxConcurrentTrials": "int",
    "maxCoresPerTrial": "int",
    "maxTrials": "int",
    "timeout": "string",
    "trialTimeout": "string"
  },
  "nCrossValidations": {
    "mode": "string"
    // For remaining properties, see NCrossValidations objects
  },
  "primaryMetric": "string",
  "testData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  },
  "testDataSize": "int",
  "trainingSettings": {
    "allowedTrainingAlgorithms": [ "string" ],
    "blockedTrainingAlgorithms": [ "string" ],
    "enableDnnTraining": "bool",
    "enableModelExplainability": "bool",
    "enableOnnxCompatibleModels": "bool",
    "enableStackEnsemble": "bool",
    "enableVoteEnsemble": "bool",
    "ensembleModelDownloadTimeout": "string",
    "stackEnsembleSettings": {
      "stackMetaLearnerKWargs": {},
      "stackMetaLearnerTrainPercentage": "int",
      "stackMetaLearnerType": "string"
    }
  },
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  },
  "validationDataSize": "int",
  "weightColumnName": "string"

För TextClassificationanvänder du:

  "taskType": "TextClassification",
  "featurizationSettings": {
    "datasetLanguage": "string"
  },
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxTrials": "int",
    "timeout": "string"
  },
  "primaryMetric": "string",
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  }

För TextClassificationMultilabelanvänder du:

  "taskType": "TextClassificationMultilabel",
  "featurizationSettings": {
    "datasetLanguage": "string"
  },
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxTrials": "int",
    "timeout": "string"
  },
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  }

För TextNERanvänder du:

  "taskType": "TextNER",
  "featurizationSettings": {
    "datasetLanguage": "string"
  },
  "limitSettings": {
    "maxConcurrentTrials": "int",
    "maxTrials": "int",
    "timeout": "string"
  },
  "validationData": {
    "description": "string",
    "jobInputType": "string",
    "mode": "string",
    "uri": "string"
  }

NCrossValidations-objekt

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  "mode": "Auto"

För anpassadanvänder du:

  "mode": "Custom",
  "value": "int"

ForecastHorizon-objekt

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  "mode": "Auto"

För anpassadanvänder du:

  "mode": "Custom",
  "value": "int"

Säsongsvariationer

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  "mode": "Auto"

För anpassadanvänder du:

  "mode": "Custom",
  "value": "int"

TargetLags-objekt

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  "mode": "Auto"

För anpassadanvänder du:

  "mode": "Custom",
  "values": [ "int" ]

TargetRollingWindowSize-objekt

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  "mode": "Auto"

För anpassadanvänder du:

  "mode": "Custom",
  "value": "int"

EarlyTerminationPolicy-objekt

Ange egenskapen policyType för att ange typ av objekt.

För Banditanvänder du:

  "policyType": "Bandit",
  "slackAmount": "int",
  "slackFactor": "int"

För MedianStoppinganvänder du:

  "policyType": "MedianStopping"

För TruncationSelectionanvänder du:

  "policyType": "TruncationSelection",
  "truncationPercentage": "int"

DistributionKonfigurationsobjekt

Ange egenskapen distributionType för att ange typ av objekt.

För Mpianvänder du:

  "distributionType": "Mpi",
  "processCountPerInstance": "int"

För PyTorchanvänder du:

  "distributionType": "PyTorch",
  "processCountPerInstance": "int"

För TensorFlowanvänder du:

  "distributionType": "TensorFlow",
  "parameterServerCount": "int",
  "workerCount": "int"

JobInput-objekt

Ange egenskapen jobInputType för att ange typ av objekt.

För custom_modelanvänder du:

  "jobInputType": "custom_model",
  "mode": "string",
  "uri": "string"

För literalanvänder du:

  "jobInputType": "literal",
  "value": "string"

För mlflow_modelanvänder du:

  "jobInputType": "mlflow_model",
  "mode": "string",
  "uri": "string"

För mltableanvänder du:

  "jobInputType": "mltable",
  "mode": "string",
  "uri": "string"

För triton_modelanvänder du:

  "jobInputType": "triton_model",
  "mode": "string",
  "uri": "string"

För uri_fileanvänder du:

  "jobInputType": "uri_file",
  "mode": "string",
  "uri": "string"

För uri_folderanvänder du:

  "jobInputType": "uri_folder",
  "mode": "string",
  "uri": "string"

SamplingAlgorithm-objekt

Ange egenskapen samplingAlgorithmType för att ange typ av objekt.

För Bayesianskaanvänder du:

  "samplingAlgorithmType": "Bayesian"

För Gridanvänder du:

  "samplingAlgorithmType": "Grid"

För Randomanvänder du:

  "samplingAlgorithmType": "Random",
  "rule": "string",
  "seed": "int"

MonitorComputeConfigurationBase-objekt

Ange egenskapen computeType för att ange typ av objekt.

För ServerlessSparkanvänder du:

  "computeType": "ServerlessSpark",
  "computeIdentity": {
    "computeIdentityType": "string"
    // For remaining properties, see MonitorComputeIdentityBase objects
  },
  "instanceType": "string",
  "runtimeVersion": "string"

ÖvervakaComputeIdentityBase-objekt

Ange egenskapen computeIdentityType för att ange typ av objekt.

För AmlTokenanvänder du:

  "computeIdentityType": "AmlToken"

För ManagedIdentityanvänder du:

  "computeIdentityType": "ManagedIdentity",
  "identity": {
    "type": "string",
    "userAssignedIdentities": {
      "{customized property}": {}
    }
  }

MonitoringSignalBase-objekt

Ange egenskapen signalType för att ange typ av objekt.

För anpassadanvänder du:

  "signalType": "Custom",
  "componentId": "string",
  "inputAssets": {
    "{customized property}": {
      "columns": {
        "{customized property}": "string"
      },
      "dataContext": "string",
      "jobInputType": "string",
      "uri": "string",
      "inputDataType": "string"
      // For remaining properties, see MonitoringInputDataBase objects
    }
  },
  "inputs": {
    "{customized property}": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    }
  },
  "metricThresholds": [
    {
      "metric": "string",
      "threshold": {
        "value": "int"
      }
    }
  ]

För DataDriftanvänder du:

  "signalType": "DataDrift",
  "featureDataTypeOverride": {
    "{customized property}": "string"
  },
  "featureImportanceSettings": {
    "mode": "string",
    "targetColumn": "string"
  },
  "features": {
    "filterType": "string"
    // For remaining properties, see MonitoringFeatureFilterBase objects
  },
  "metricThresholds": [
    {
      "threshold": {
        "value": "int"
      },
      "dataType": "string"
      // For remaining properties, see DataDriftMetricThresholdBase objects
    }
  ],
  "productionData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  },
  "referenceData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }

För DataQualityanvänder du:

  "signalType": "DataQuality",
  "featureDataTypeOverride": {
    "{customized property}": "string"
  },
  "featureImportanceSettings": {
    "mode": "string",
    "targetColumn": "string"
  },
  "features": {
    "filterType": "string"
    // For remaining properties, see MonitoringFeatureFilterBase objects
  },
  "metricThresholds": [
    {
      "threshold": {
        "value": "int"
      },
      "dataType": "string"
      // For remaining properties, see DataQualityMetricThresholdBase objects
    }
  ],
  "productionData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  },
  "referenceData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }

För FeatureAttributionDriftanvänder du:

  "signalType": "FeatureAttributionDrift",
  "featureDataTypeOverride": {
    "{customized property}": "string"
  },
  "featureImportanceSettings": {
    "mode": "string",
    "targetColumn": "string"
  },
  "metricThreshold": {
    "metric": "NormalizedDiscountedCumulativeGain",
    "threshold": {
      "value": "int"
    }
  },
  "productionData": [
    {
      "columns": {
        "{customized property}": "string"
      },
      "dataContext": "string",
      "jobInputType": "string",
      "uri": "string",
      "inputDataType": "string"
      // For remaining properties, see MonitoringInputDataBase objects
    }
  ],
  "referenceData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }

För PredictionDriftanvänder du:

  "signalType": "PredictionDrift",
  "featureDataTypeOverride": {
    "{customized property}": "string"
  },
  "metricThresholds": [
    {
      "threshold": {
        "value": "int"
      },
      "dataType": "string"
      // For remaining properties, see PredictionDriftMetricThresholdBase objects
    }
  ],
  "productionData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  },
  "referenceData": {
    "columns": {
      "{customized property}": "string"
    },
    "dataContext": "string",
    "jobInputType": "string",
    "uri": "string",
    "inputDataType": "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }

MonitoringInputDataBase-objekt

Ange egenskapen inputDataType för att ange typ av objekt.

För fastanvänder du:

  "inputDataType": "Fixed"

För rullandeanvänder du:

  "inputDataType": "Rolling",
  "preprocessingComponentId": "string",
  "windowOffset": "string",
  "windowSize": "string"

För Staticanvänder du:

  "inputDataType": "Static",
  "preprocessingComponentId": "string",
  "windowEnd": "string",
  "windowStart": "string"

ÖvervakningFeatureFilterBase-objekt

Ange egenskapen filterType för att ange typ av objekt.

För AllFeaturesanvänder du:

  "filterType": "AllFeatures"

För FeatureSubsetanvänder du:

  "filterType": "FeatureSubset",
  "features": [ "string" ]

För TopNByAttributionanvänder du:

  "filterType": "TopNByAttribution",
  "top": "int"

DataDriftMetricThresholdBase-objekt

Ange egenskapen dataType för att ange typ av objekt.

För kategoriskaanvänder du:

  "dataType": "Categorical",
  "metric": "string"

För numeriskaanvänder du:

  "dataType": "Numerical",
  "metric": "string"

DataQualityMetricThresholdBase-objekt

Ange egenskapen dataType för att ange typ av objekt.

För kategoriskaanvänder du:

  "dataType": "Categorical",
  "metric": "string"

För numeriskaanvänder du:

  "dataType": "Numerical",
  "metric": "string"

PredictionDriftMetricThresholdBase-objekt

Ange egenskapen dataType för att ange typ av objekt.

För kategoriskaanvänder du:

  "dataType": "Categorical",
  "metric": "string"

För numeriskaanvänder du:

  "dataType": "Numerical",
  "metric": "string"

TriggerBase-objekt

Ange egenskapen triggerType för att ange typ av objekt.

För Cronanvänder du:

  "triggerType": "Cron",
  "expression": "string"

Använd för återkommande:

  "triggerType": "Recurrence",
  "frequency": "string",
  "interval": "int",
  "schedule": {
    "hours": [ "int" ],
    "minutes": [ "int" ],
    "monthDays": [ "int" ],
    "weekDays": [ "string" ]
  }

Egenskapsvärden

arbetsytor/scheman

Namn Beskrivning Värde
typ Resurstypen "Microsoft.MachineLearningServices/workspaces/schedules"
apiVersion Resurs-API-versionen '2023-10-01'
Namn Resursnamnet

Se hur du anger namn och typer för underordnade resurser i JSON ARM-mallar.
sträng (krävs)
Egenskaper [Krävs] Ytterligare attribut för entiteten. ScheduleProperties (krävs)

ScheduleProperties

Namn Beskrivning Värde
handling [Krävs] Anger åtgärden i schemat ScheduleActionBase (krävs)
beskrivning Texten för tillgångsbeskrivningen. sträng
displayName Visningsnamn för schemat. sträng
isEnabled Är schemat aktiverat? Bool
Egenskaper Ordlistan för tillgångsegenskap. ResourceBaseProperties
Taggar Taggordlista. Taggar kan läggas till, tas bort och uppdateras. objekt
utlösa [Krävs] Anger utlösarinformationen TriggerBase (krävs)

ScheduleActionBase

Namn Beskrivning Värde
actionType Ange objekttyp CreateJob
CreateMonitor
InvokeBatchEndpoint (krävs)

JobScheduleAction

Namn Beskrivning Värde
actionType [Krävs] Anger åtgärdstypen för schemat "CreateJob" (krävs)
jobDefinition [Krävs] Definierar information om schemalägg åtgärdsdefinition. JobBaseProperties (krävs)

JobBaseProperties

Namn Beskrivning Värde
componentId ARM-resurs-ID för komponentresursen. sträng
computeId ARM-resurs-ID för beräkningsresursen. sträng
beskrivning Texten för tillgångsbeskrivningen. sträng
displayName Visningsnamn för jobbet. sträng
experimentName Namnet på experimentet som jobbet tillhör. Om det inte anges placeras jobbet i experimentet "Standard". sträng
identitet Identitetskonfiguration. Om det anges bör detta vara en av AmlToken, ManagedIdentity, UserIdentity eller null.
Standardvärdet är AmlToken om null.
IdentityConfiguration
isArchived Arkiveras tillgången? Bool
Egenskaper Ordlistan för tillgångsegenskap. ResourceBaseProperties
tjänster Lista över JobEndpoints.
För lokala jobb har en jobbslutpunkt ett slutpunktsvärde för FileStreamObject.
JobBaseServices
Taggar Taggordlista. Taggar kan läggas till, tas bort och uppdateras. objekt
jobType Ange objekttyp AutoML-
kommando
Pipeline
Svep (krävs)

IdentityConfiguration

Namn Beskrivning Värde
identityType Ange objekttyp AMLToken
Hanterad
UserIdentity (krävs)

AmlToken

Namn Beskrivning Värde
identityType [Krävs] Anger typen av identitetsramverk. "AMLToken" (krävs)

Hanterad identitet

Namn Beskrivning Värde
identityType [Krävs] Anger typen av identitetsramverk. "Hanterad" (krävs)
clientId Anger en användartilldelad identitet efter klient-ID. Ange inte det här fältet för systemtilldelade. sträng

Begränsningar:
Min längd = 36
Maximal längd = 36
Mönster = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
objectId Anger en användartilldelad identitet efter objekt-ID. Ange inte det här fältet för systemtilldelade. sträng

Begränsningar:
Min längd = 36
Maximal längd = 36
Mönster = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
resourceId Anger en användartilldelad identitet efter ARM-resurs-ID. Ange inte det här fältet för systemtilldelade. sträng

UserIdentity

Namn Beskrivning Värde
identityType [Krävs] Anger typen av identitetsramverk. "UserIdentity" (krävs)

ResourceBaseProperties

Namn Beskrivning Värde
{anpassad egenskap} sträng

JobBaseServices

Namn Beskrivning Värde
{anpassad egenskap} JobService

JobService

Namn Beskrivning Värde
Slutpunkt Url för slutpunkt. sträng
jobServiceType Slutpunktstyp. sträng
Noder Noder som användaren vill starta tjänsten på.
Om Noder inte har angetts eller angetts till null startas tjänsten endast på leader-noden.
noder
hamn Port för slutpunkt. Int
Egenskaper Ytterligare egenskaper som ska anges på slutpunkten. JobServiceProperties

Noder

Namn Beskrivning Värde
nodesValueType Ange objekttyp Alla (krävs)

Allanoder

Namn Beskrivning Värde
nodesValueType [Krävs] Typ av nodvärde "Alla" (krävs)

JobServiceEgenskaper

Namn Beskrivning Värde
{anpassad egenskap} sträng

AutoMLJob

Namn Beskrivning Värde
jobType [Krävs] Anger typen av jobb. "AutoML" (krävs)
environmentId ARM-resurs-ID för miljöspecifikationen för jobbet.
Det här är ett valfritt värde för att ange, om det inte anges, att AutoML standardinställningen är produktionsversion av autoML-kurerad miljö när jobbet körs.
sträng
environmentVariables Miljövariabler som ingår i jobbet. AutoMLJobEnvironmentVariables
Utgångar Mappning av utdatabindningar som används i jobbet. AutoMLJobOutputs
queueSettings Köinställningar för jobbet QueueSettings
Resurser Beräkningsresurskonfiguration för jobbet. JobResourceConfiguration
taskDetails [Krävs] Detta representerar scenario som kan vara en av tabeller/NLP/image AutoMLVertical (krävs)

AutoMLJobEnvironmentVariables

Namn Beskrivning Värde
{anpassad egenskap} sträng

AutoMLJobOutputs

Namn Beskrivning Värde
{anpassad egenskap} JobOutput

JobOutput

Namn Beskrivning Värde
beskrivning Beskrivning av utdata. sträng
jobOutputType Ange objekttyp custom_model
mlflow_model
mltable
triton_model
uri_file
uri_folder (krävs)

CustomModelJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "custom_model" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

MLFlowModelJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "mlflow_model" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

MLTableJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "mltable" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

TritonModelJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "triton_model" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

UriFileJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "uri_file" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

UriFolderJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "uri_folder" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

Köinställningar

Namn Beskrivning Värde
jobTier Styr beräkningsjobbnivån "Grundläggande"
"Null"
"Premium"
"Spot"
"Standard"

JobResourceConfiguration

Namn Beskrivning Värde
dockerArgs Extra argument att skicka till Docker-körningskommandot. Detta skulle åsidosätta alla parametrar som redan har angetts av systemet, eller i det här avsnittet. Den här parametern stöds endast för Azure ML-beräkningstyper. sträng
instanceCount Valfritt antal instanser eller noder som används av beräkningsmålet. Int
instanceType Valfri typ av virtuell dator som stöds av beräkningsmålet. sträng
Egenskaper Ytterligare egenskapsväska. ResourceConfigurationProperties
shmSize Storleken på docker-containerns delade minnesblock. Detta bör vara i formatet (number)(unit) där talet ska vara större än 0 och enheten kan vara en av b(byte), k(kilobyte), m(megabyte) eller g(gigabyte). sträng

Begränsningar:
Mönster = \d+[bBkKmMgG]

ResourceConfigurationProperties

Namn Beskrivning Värde
{anpassad egenskap}

AutoMLVertical

Namn Beskrivning Värde
logVerbosity Logga verbositet för jobbet. "Kritisk"
"Felsöka"
"Fel"
"Info"
"NotSet"
"Varning"
targetColumnName Målkolumnnamn: Det här är kolumnen förutsägelsevärden.
Kallas även etikettkolumnnamn i kontexten för klassificeringsuppgifter.
sträng
trainingData [Krävs] Träningsdataindata. MLTableJobInput (krävs)
taskType Ange objekttyp Klassificering
Prognostisering
ImageClassification
ImageClassificationMultilabel
ImageInstanceSegmentation
ImageObjectDetection
Regression
TextKlassificering
TextClassificationMultilabel
TextNER (krävs)

MLTableJobInput

Namn Beskrivning Värde
beskrivning Beskrivning av indata. sträng
jobInputType [Krävs] Anger typen av jobb. "custom_model"
"literal"
"mlflow_model"
"mltable"
"triton_model"
"uri_file"
"uri_folder" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

Klassificering

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "Klassificering" (krävs)
cvSplitColumnNames Kolumner som ska användas för CVSplit-data. string[]
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. TableVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. TableVerticalLimitSettings
nCrossValidations Antal korsvalideringsdelegeringar som ska tillämpas på träningsdatauppsättningen
när valideringsdatauppsättningen inte har angetts.
NCrossValidations
positiveLabel Positiv etikett för beräkning av binära mått. sträng
primaryMetric Primärt mått för aktiviteten. "AUCWeighted"
"Noggrannhet"
"AveragePrecisionScoreWeighted"
"NormMacroRecall"
"PrecisionScoreWeighted"
testData Testa indata. MLTableJobInput
testDataSize Den del av testdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
trainingSettings Indata för träningsfasen för ett AutoML-jobb. ClassificationTrainingSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
weightColumnName Namnet på exempelviktkolumnen. Automatiserad ML stöder en viktad kolumn som indata, vilket gör att rader i data viktas upp eller ned. sträng

TableVerticalFeaturizationSettings

Namn Beskrivning Värde
blockedTransformers Dessa transformatorer får inte användas vid funktionalisering. Strängmatris som innehåller något av:
"CatTargetEncoder"
"CountVectorizer"
"HashOneHotEncoder"
"LabelEncoder"
"NaiveBayes"
"OneHotEncoder"
"TextTargetEncoder"
"TfIdf"
"WoETargetEncoder"
"WordEmbedding"
columnNameAndTypes Ordlista med kolumnnamn och dess typ (int, float, string, datetime osv.). TableVerticalFeaturizationSettingsColumnNameAndTypes
datasetLanguage Datamängdsspråk, användbart för textdata. sträng
enableDnnFeaturization Avgör om du vill använda Dnn-baserade funktionaliserare för datafunktionalisering. Bool
läge Funktionaliseringsläge – Användaren kan behålla standardläget "Auto" och AutoML tar hand om nödvändig omvandling av data i funktionaliseringsfasen.
Om "Av" har valts görs ingen funktionalisering.
Om "Anpassad" har valts kan användaren ange ytterligare indata för att anpassa hur funktionalisering görs.
"Auto"
"Anpassad"
"Av"
transformerParams Användaren kan ange ytterligare transformatorer som ska användas tillsammans med de kolumner som den skulle tillämpas på och parametrar för transformeringskonstruktorn. TableVerticalFeaturizationSettingsTransformerParams

TableVerticalFeaturizationSettingsColumnNameAndTypes

Namn Beskrivning Värde
{anpassad egenskap} sträng

TableVerticalFeaturizationSettingsTransformerParams

Namn Beskrivning Värde
{anpassad egenskap} ColumnTransformer[]

ColumnTransformer

Namn Beskrivning Värde
Fält Fält som transformerarlogik ska tillämpas på. string[]
Parametrar Olika egenskaper som ska skickas till transformatorn.
Indata som förväntas är en ordlista med nyckel/värde-par i JSON-format.

TableVerticalLimitSettings

Namn Beskrivning Värde
enableEarlyTermination Aktivera tidig avslutning, avgör om AutoMLJob avslutas tidigt om det inte finns någon poängförbättring under de senaste 20 iterationerna. Bool
exitScore Slutpoäng för AutoML-jobbet. Int
maxConcurrentTrials Maximalt antal samtidiga iterationer. Int
maxCoresPerTrial Maximalt antal kärnor per iteration. Int
maxTrials Antal iterationer. Int
Timeout Tidsgräns för AutoML-jobb. sträng
trialTimeout Timeout för iteration. sträng

NCrossValidations

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoNCrossValidations

Namn Beskrivning Värde
läge [Krävs] Läge för att fastställa N-Korsvalidering. "Auto" (krävs)

CustomNCrossValidations

Namn Beskrivning Värde
läge [Krävs] Läge för att fastställa N-Korsvalidering. "Anpassad" (krävs)
värde [Krävs] Värde för N-Korsvalidering. int (krävs)

ClassificationTrainingSettings

Namn Beskrivning Värde
allowedTrainingAlgorithms Tillåtna modeller för klassificeringsaktivitet. Strängmatris som innehåller något av:
"BernoulliNaiveBayes"
"DecisionTree"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LightGBM"
"LinearSVM"
"LogisticRegression"
"MultinomialNaiveBayes"
"RandomForest"
"SGD"
"SVM"
"XGBoostClassifier"
blockedTrainingAlgorithms Blockerade modeller för klassificeringsaktivitet. Strängmatris som innehåller något av:
"BernoulliNaiveBayes"
"DecisionTree"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LightGBM"
"LinearSVM"
"LogisticRegression"
"MultinomialNaiveBayes"
"RandomForest"
"SGD"
"SVM"
"XGBoostClassifier"
enableDnnTraining Aktivera rekommendation för DNN-modeller. Bool
enableModelExplainability Flagga för att aktivera förklaring på bästa modell. Bool
enableOnnxCompatibleModels Flagga för att aktivera onnx-kompatibla modeller. Bool
enableStackEnsemble Aktivera stackensemblekörning. Bool
enableVoteEnsemble Aktivera röstningsensemblekörning. Bool
ensembleModelDownloadTimeout Under VotingEnsemble- och StackEnsemble-modellgenereringen laddas flera anpassade modeller från de tidigare underordnade körningarna ned.
Konfigurera den här parametern med ett högre värde än 300 sekunder om det behövs mer tid.
sträng
stackEnsembleSettings Inställningar för stackensembler för stackensemblekörning. StackEnsembleSettings

StackEnsembleSettings

Namn Beskrivning Värde
stackMetaLearnerKWargs Valfria parametrar som ska skickas till metainlärarens initierare.
stackMetaLearnerTrainPercentage Anger den andel av träningsuppsättningen (när du väljer tränings- och valideringstyp för träning) som ska reserveras för träning av metaläraren. Standardvärdet är 0,2. Int
stackMetaLearnerType Metainläraren är en modell som tränas på utdata från de enskilda heterogena modellerna. "ElasticNet"
"ElasticNetCV"
"LightGBMClassifier"
"LightGBMRegressor"
"Linjärregression"
"LogisticRegression"
"LogisticRegressionCV"
"Ingen"

Prognostisering

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "Prognostisering" (krävs)
cvSplitColumnNames Kolumner som ska användas för CVSplit-data. string[]
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. TableVerticalFeaturizationSettings
forecastingSettings Prognostisera aktivitetsspecifika indata. ForecastingSettings
limitSettings Körningsbegränsningar för AutoMLJob. TableVerticalLimitSettings
nCrossValidations Antal korsvalideringsdelegeringar som ska tillämpas på träningsdatauppsättningen
när valideringsdatauppsättningen inte har angetts.
NCrossValidations
primaryMetric Primärt mått för prognostiseringsaktivitet. "NormalizedMeanAbsoluteError"
"NormalizedRootMeanSquaredError"
"R2Score"
"SpearmanCorrelation"
testData Testa indata. MLTableJobInput
testDataSize Den del av testdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
trainingSettings Indata för träningsfasen för ett AutoML-jobb. ForecastingTrainingSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
weightColumnName Namnet på exempelviktkolumnen. Automatiserad ML stöder en viktad kolumn som indata, vilket gör att rader i data viktas upp eller ned. sträng

PrognostiseringInställningar

Namn Beskrivning Värde
countryOrRegionForHolidays Land eller region för helgdagar för prognostiseringsuppgifter.
Dessa bör vara ISO 3166 tvåbokstavs lands-/regionkoder, till exempel "US" eller "GB".
sträng
cvStepSize Antal perioder mellan ursprungstiden för en CV-vikning och nästa vik. För
om CVStepSize = 3 för dagliga data, kommer ursprungstiden för varje vik att vara
med tre dagars mellanrum.
Int
featureLags Flagga för att generera fördröjningar för de numeriska funktionerna med "auto" eller null. "Auto"
"Ingen"
forecastHorizon Den önskade maximala prognoshorisonten i tidsseriefrekvensenheter. ForecastHorizon
frekvens Vid prognostisering representerar den här parametern den period med vilken prognosen önskas, till exempel dagligen, varje vecka, varje år osv. Prognosfrekvensen är datamängdsfrekvens som standard. sträng
Säsongsvariationer Ange säsongsvariationer för tidsserier som en heltalsmultipel för seriefrekvensen.
Om säsongsvariationen är inställd på "auto" kommer den att härledas.
Säsongsvariationer
shortSeriesHandlingConfig Parametern som definierar hur AutoML ska hantera korta tidsserier. "Auto"
"Släpp"
"Ingen"
"Pad"
targetAggregateFunction Den funktion som ska användas för att aggregera målkolumnen för tidsserier så att den överensstämmer med en angiven användarfrekvens.
Om TargetAggregateFunction har angetts, t.ex. inte "None", men freq-parametern inte har angetts, utlöses felet. Möjliga målsammansättningsfunktioner är: "sum", "max", "min" och "mean".
"Max"
"Medelvärde"
"Min"
"Ingen"
"Summa"
targetLags Antalet tidigare perioder som ska fördröjas från målkolumnen. TargetLags
targetRollingWindowSize Antalet tidigare perioder som används för att skapa ett rullande fönstergenomsnitt för målkolumnen. TargetRollingWindowSize
timeColumnName Namnet på tidskolumnen. Den här parametern krävs vid prognostisering för att ange kolumnen datetime i indata som används för att skapa tidsserierna och härleda dess frekvens. sträng
timeSeriesIdColumnNames Namnen på kolumner som används för att gruppera en tidsserie. Den kan användas för att skapa flera serier.
Om kornigheten inte har definierats antas datauppsättningen vara en tidsserie. Den här parametern används med prognostisering av aktivitetstyp.
string[]
useStl Konfigurera STL-nedbrytning av målkolumnen för tidsserier. "Ingen"
"Säsong"
"SeasonTrend"

ForecastHorizon

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoForecastHorizon

Namn Beskrivning Värde
läge [Krävs] Ange markeringsläge för prognoshorisontvärde. "Auto" (krävs)

CustomForecastHorizon

Namn Beskrivning Värde
läge [Krävs] Ange markeringsläge för prognoshorisontvärde. "Anpassad" (krävs)
värde [Krävs] Prognoshorisontvärde. int (krävs)

Säsongsvariationer

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoSeasonality

Namn Beskrivning Värde
läge [Krävs] Säsongsläge. "Auto" (krävs)

CustomSeasonality

Namn Beskrivning Värde
läge [Krävs] Säsongsläge. "Anpassad" (krävs)
värde [Krävs] Säsongsvärde. int (krävs)

TargetLags

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoTargetLags

Namn Beskrivning Värde
läge [Krävs] Ange målfördröjningsläge – Automatiskt/anpassat "Auto" (krävs)

CustomTargetLags

Namn Beskrivning Värde
läge [Krävs] Ange målfördröjningsläge – Automatiskt/anpassat "Anpassad" (krävs)
värden [Krävs] Ange målfördröjningsvärden. int[] (krävs)

TargetRollingWindowSize

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoTargetRollingWindowSize

Namn Beskrivning Värde
läge [Krävs] TargetRollingWindowSiz identifieringsläge. "Auto" (krävs)

CustomTargetRollingWindowSize

Namn Beskrivning Värde
läge [Krävs] TargetRollingWindowSiz identifieringsläge. "Anpassad" (krävs)
värde [Krävs] TargetRollingWindowSize-värde. int (krävs)

ForecastingTrainingSettings

Namn Beskrivning Värde
allowedTrainingAlgorithms Tillåtna modeller för prognostiseringsaktivitet. Strängmatris som innehåller något av:
"Arimax"
"AutoArima"
"Genomsnitt"
"DecisionTree"
"ElasticNet"
"ExponentialSmoothing"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LassoLars"
"LightGBM"
"Naive"
"Profet"
"RandomForest"
"SGD"
"SeasonalAverage"
"SeasonalNaive"
"TCNForecaster"
"XGBoostRegressor"
blockedTrainingAlgorithms Blockerade modeller för prognostiseringsaktivitet. Strängmatris som innehåller något av:
"Arimax"
"AutoArima"
"Genomsnitt"
"DecisionTree"
"ElasticNet"
"ExponentialSmoothing"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LassoLars"
"LightGBM"
"Naive"
"Profet"
"RandomForest"
"SGD"
"SeasonalAverage"
"SeasonalNaive"
"TCNForecaster"
"XGBoostRegressor"
enableDnnTraining Aktivera rekommendation för DNN-modeller. Bool
enableModelExplainability Flagga för att aktivera förklaring på bästa modell. Bool
enableOnnxCompatibleModels Flagga för att aktivera onnx-kompatibla modeller. Bool
enableStackEnsemble Aktivera stackensemblekörning. Bool
enableVoteEnsemble Aktivera röstningsensemblekörning. Bool
ensembleModelDownloadTimeout Under VotingEnsemble- och StackEnsemble-modellgenereringen laddas flera anpassade modeller från de tidigare underordnade körningarna ned.
Konfigurera den här parametern med ett högre värde än 300 sekunder om det behövs mer tid.
sträng
stackEnsembleSettings Inställningar för stackensembler för stackensemblekörning. StackEnsembleSettings

ImageClassification

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "ImageClassification" (krävs)
limitSettings [Krävs] Begränsa inställningarna för AutoML-jobbet. ImageLimitSettings (krävs)
modelSettings Inställningar som används för att träna modellen. ImageModelSettingsClassification
primaryMetric Primärt mått för att optimera för den här uppgiften. "AUCWeighted"
"Noggrannhet"
"AveragePrecisionScoreWeighted"
"NormMacroRecall"
"PrecisionScoreWeighted"
searchSpace Sök efter sampling av olika kombinationer av modeller och deras hyperparametrar. ImageModelDistributionSettingsClassification[]
sweepSettings Sopning av modeller och hyperparametrar som sveper relaterade inställningar. ImageSweepSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int

ImageLimitSettings

Namn Beskrivning Värde
maxConcurrentTrials Maximalt antal samtidiga AutoML-iterationer. Int
maxTrials Maximalt antal AutoML-iterationer. Int
Timeout Tidsgräns för AutoML-jobb. sträng

ImageModelSettingsClassification

Namn Beskrivning Värde
advancedSettings Inställningar för avancerade scenarier. sträng
amsGradient Aktivera AMSGrad när optimeraren är "adam" eller "adamw". Bool
Stödsystem Inställningar för att använda förhöjda inställningar. sträng
beta1 Värdet för "beta1" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. Int
beta2 Värdet för "beta2" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. Int
checkpointFrequency Frekvens för att lagra modellkontrollpunkter. Måste vara ett positivt heltal. Int
checkpointModel Den förtränad kontrollpunktsmodellen för inkrementell träning. MLFlowModelJobInput
checkpointRunId ID:t för en tidigare körning som har en förtränad kontrollpunkt för inkrementell träning. sträng
distribuerad Om du vill använda distribuerad träning. Bool
earlyStopping Aktivera tidig stopplogik under träning. Bool
earlyStoppingDelay Minsta antal epoker eller valideringsutvärderingar som ska vänta innan den primära måttförbättringen
spåras för tidig stoppning. Måste vara ett positivt heltal.
Int
earlyStoppingPatience Minsta antal epoker eller valideringsutvärderingar utan primär måttförbättring före
-körningen stoppas. Måste vara ett positivt heltal.
Int
enableOnnxNormalization Aktivera normalisering vid export av ONNX-modell. Bool
evaluationFrequency Frekvens för att utvärdera valideringsdatauppsättningen för att hämta måttpoäng. Måste vara ett positivt heltal. Int
gradientAccumulationStep Toningsansamling innebär att du kör ett konfigurerat antal "GradAccumulationStep"-steg utan
uppdatera modellvikterna medan du ackumulerar toningarna i dessa steg och sedan använder
de ackumulerade toningarna för att beräkna viktuppdateringarna. Måste vara ett positivt heltal.
Int
layerToFreeze Antal lager som ska frysas för modellen. Måste vara ett positivt heltal.
Att till exempel skicka 2 som värde för "seresnext" innebär
frysskikt0 och lager1. En fullständig lista över modeller som stöds och information om lagerfrysning finns i
se: /azure/machine-learning/how-to-auto-train-image-models.
Int
learningRate Inledande inlärningsfrekvens. Måste vara en flottör i intervallet [0, 1]. Int
learningRateScheduler Typ av schemaläggare för inlärningsfrekvens. Måste vara "warmup_cosine" eller "steg". "Ingen"
"Steg"
"WarmupCosine"
modelName Namnet på den modell som ska användas för träning.
Mer information om tillgängliga modeller finns i den officiella dokumentationen:
/azure/machine-learning/how-to-auto-train-image-models.
sträng
rörelsemängd Värdet för momentum när optimeraren är "sgd". Måste vara en flottör i intervallet [0, 1]. Int
nesterov Aktivera nesterov när optimeraren är "sgd". Bool
numberOfEpochs Antal träningsepoker. Måste vara ett positivt heltal. Int
numberOfWorkers Antal datainläsningsarbetare. Måste vara ett icke-negativt heltal. Int
Optimizer Typ av optimerare. "Adam"
"Adamw"
"Ingen"
"Sgd"
randomSeed Slumpmässigt frö som ska användas vid användning av deterministisk träning. Int
stepLRGamma Värdet för gamma när learning rate scheduler är "step". Måste vara en flottör i intervallet [0, 1]. Int
stepLRStepSize Värdet för stegstorlek när schemaläggaren för inlärningsfrekvens är "steg". Måste vara ett positivt heltal. Int
trainingBatchSize Träningsbatchstorlek. Måste vara ett positivt heltal. Int
trainingCropSize Bildgrödstorlek som är indata till det neurala nätverket för träningsdatauppsättningen. Måste vara ett positivt heltal. Int
validationBatchSize Valideringsbatchstorlek. Måste vara ett positivt heltal. Int
validationCropSize Bildgrödstorlek som är indata till det neurala nätverket för valideringsdatauppsättningen. Måste vara ett positivt heltal. Int
validationResizeSize Bildstorlek som du vill ändra storlek på innan du beskär för valideringsdatauppsättningen. Måste vara ett positivt heltal. Int
warmupCosineLRCycles Värdet för cosinincykeln när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara en flottör i intervallet [0, 1]. Int
warmupCosineLRWarmupEpochs Värdet för uppvärmningsepoker när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara ett positivt heltal. Int
weightDecay Värdet för viktförfall när optimeraren är "sgd", "adam" eller "adamw". Måste vara en float i intervallet[0, 1]. Int
weightedLoss Viktad förlust. De godkända värdena är 0 för ingen viktad förlust.
1 för viktad förlust med kvrt. (class_weights). 2 för viktad förlust med class_weights. Måste vara 0, 1 eller 2.
Int

MLFlowModelJobInput

Namn Beskrivning Värde
beskrivning Beskrivning av indata. sträng
jobInputType [Krävs] Anger typen av jobb. "custom_model"
"literal"
"mlflow_model"
"mltable"
"triton_model"
"uri_file"
"uri_folder" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

ImageModelDistributionSettingsClassification

Namn Beskrivning Värde
amsGradient Aktivera AMSGrad när optimeraren är "adam" eller "adamw". sträng
Stödsystem Inställningar för att använda förhöjda inställningar. sträng
beta1 Värdet för "beta1" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. sträng
beta2 Värdet för "beta2" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. sträng
distribuerad Om distributionsträning ska användas. sträng
earlyStopping Aktivera tidig stopplogik under träning. sträng
earlyStoppingDelay Minsta antal epoker eller valideringsutvärderingar som ska vänta innan den primära måttförbättringen
spåras för tidig stoppning. Måste vara ett positivt heltal.
sträng
earlyStoppingPatience Minsta antal epoker eller valideringsutvärderingar utan primär måttförbättring före
-körningen stoppas. Måste vara ett positivt heltal.
sträng
enableOnnxNormalization Aktivera normalisering vid export av ONNX-modell. sträng
evaluationFrequency Frekvens för att utvärdera valideringsdatauppsättningen för att hämta måttpoäng. Måste vara ett positivt heltal. sträng
gradientAccumulationStep Toningsansamling innebär att du kör ett konfigurerat antal "GradAccumulationStep"-steg utan
uppdatera modellvikterna medan du ackumulerar toningarna i dessa steg och sedan använder
de ackumulerade toningarna för att beräkna viktuppdateringarna. Måste vara ett positivt heltal.
sträng
layerToFreeze Antal lager som ska frysas för modellen. Måste vara ett positivt heltal.
Att till exempel skicka 2 som värde för "seresnext" innebär
frysskikt0 och lager1. En fullständig lista över modeller som stöds och information om lagerfrysning finns i
se: /azure/machine-learning/how-to-auto-train-image-models.
sträng
learningRate Inledande inlärningsfrekvens. Måste vara en flottör i intervallet [0, 1]. sträng
learningRateScheduler Typ av schemaläggare för inlärningsfrekvens. Måste vara "warmup_cosine" eller "steg". sträng
modelName Namnet på den modell som ska användas för träning.
Mer information om tillgängliga modeller finns i den officiella dokumentationen:
/azure/machine-learning/how-to-auto-train-image-models.
sträng
rörelsemängd Värdet för momentum när optimeraren är "sgd". Måste vara en flottör i intervallet [0, 1]. sträng
nesterov Aktivera nesterov när optimeraren är "sgd". sträng
numberOfEpochs Antal träningsepoker. Måste vara ett positivt heltal. sträng
numberOfWorkers Antal datainläsningsarbetare. Måste vara ett icke-negativt heltal. sträng
Optimizer Typ av optimerare. Måste vara antingen "sgd", "adam" eller "adamw". sträng
randomSeed Slumpmässigt frö som ska användas vid användning av deterministisk träning. sträng
stepLRGamma Värdet för gamma när learning rate scheduler är "step". Måste vara en flottör i intervallet [0, 1]. sträng
stepLRStepSize Värdet för stegstorlek när schemaläggaren för inlärningsfrekvens är "steg". Måste vara ett positivt heltal. sträng
trainingBatchSize Träningsbatchstorlek. Måste vara ett positivt heltal. sträng
trainingCropSize Bildgrödstorlek som är indata till det neurala nätverket för träningsdatauppsättningen. Måste vara ett positivt heltal. sträng
validationBatchSize Valideringsbatchstorlek. Måste vara ett positivt heltal. sträng
validationCropSize Bildgrödstorlek som är indata till det neurala nätverket för valideringsdatauppsättningen. Måste vara ett positivt heltal. sträng
validationResizeSize Bildstorlek som du vill ändra storlek på innan du beskär för valideringsdatauppsättningen. Måste vara ett positivt heltal. sträng
warmupCosineLRCycles Värdet för cosinincykeln när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara en flottör i intervallet [0, 1]. sträng
warmupCosineLRWarmupEpochs Värdet för uppvärmningsepoker när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara ett positivt heltal. sträng
weightDecay Värdet för viktförfall när optimeraren är "sgd", "adam" eller "adamw". Måste vara en float i intervallet[0, 1]. sträng
weightedLoss Viktad förlust. De godkända värdena är 0 för ingen viktad förlust.
1 för viktad förlust med kvrt. (class_weights). 2 för viktad förlust med class_weights. Måste vara 0, 1 eller 2.
sträng

ImageSweepSettings

Namn Beskrivning Värde
earlyTermination Typ av princip för tidig uppsägning. EarlyTerminationPolicy
samplingAlgorithm [Krävs] Typ av algoritmer för hyperparametersampling. "Bayesian"
Rutnät
"Random" (krävs)

EarlyTerminationPolicy

Namn Beskrivning Värde
delayEvaluation Antal intervall som den första utvärderingen ska fördröjas med. Int
evaluationInterval Intervall (antal körningar) mellan principutvärderingar. Int
policyType Ange objekttyp Bandit
MedianStopping
TruncationSelection (krävs)

BanditPolicy

Namn Beskrivning Värde
policyType [Krävs] Namn på principkonfiguration "Bandit" (krävs)
slackAmount Absolut avstånd som tillåts från den bästa körningen. Int
slackFactor Förhållandet mellan det tillåtna avståndet från den bäst presterande körningen. Int

MedianStoppingPolicy

Namn Beskrivning Värde
policyType [Krävs] Namn på principkonfiguration "MedianStopping" (krävs)

TruncationSelectionPolicy

Namn Beskrivning Värde
policyType [Krävs] Namn på principkonfiguration "TruncationSelection" (krävs)
truncationPercentage Procentandelen körningar som ska avbrytas vid varje utvärderingsintervall. Int

ImageClassificationMultilabel

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "ImageClassificationMultilabel" (krävs)
limitSettings [Krävs] Begränsa inställningarna för AutoML-jobbet. ImageLimitSettings (krävs)
modelSettings Inställningar som används för att träna modellen. ImageModelSettingsClassification
primaryMetric Primärt mått för att optimera för den här uppgiften. "AUCWeighted"
"Noggrannhet"
"AveragePrecisionScoreWeighted"
"IOU"
"NormMacroRecall"
"PrecisionScoreWeighted"
searchSpace Sök efter sampling av olika kombinationer av modeller och deras hyperparametrar. ImageModelDistributionSettingsClassification[]
sweepSettings Sopning av modeller och hyperparametrar som sveper relaterade inställningar. ImageSweepSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int

ImageInstanceSegmentation

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "ImageInstanceSegmentation" (krävs)
limitSettings [Krävs] Begränsa inställningarna för AutoML-jobbet. ImageLimitSettings (krävs)
modelSettings Inställningar som används för att träna modellen. ImageModelSettingsObjectDetection
primaryMetric Primärt mått för att optimera för den här uppgiften. "MeanAveragePrecision"
searchSpace Sök efter sampling av olika kombinationer av modeller och deras hyperparametrar. ImageModelDistributionSettingsObjectDetection[]
sweepSettings Sopning av modeller och hyperparametrar som sveper relaterade inställningar. ImageSweepSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int

ImageModelSettingsObjectDetection

Namn Beskrivning Värde
advancedSettings Inställningar för avancerade scenarier. sträng
amsGradient Aktivera AMSGrad när optimeraren är "adam" eller "adamw". Bool
Stödsystem Inställningar för att använda förhöjda inställningar. sträng
beta1 Värdet för "beta1" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. Int
beta2 Värdet för "beta2" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. Int
boxDetectionsPerImage Maximalt antal identifieringar per bild för alla klasser. Måste vara ett positivt heltal.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
boxScoreThreshold Under slutsatsdragningen returnerar du endast förslag med en klassificeringspoäng som är större än
BoxScoreThreshold. Måste vara en float i intervallet[0, 1].
Int
checkpointFrequency Frekvens för att lagra modellkontrollpunkter. Måste vara ett positivt heltal. Int
checkpointModel Den förtränad kontrollpunktsmodellen för inkrementell träning. MLFlowModelJobInput
checkpointRunId ID:t för en tidigare körning som har en förtränad kontrollpunkt för inkrementell träning. sträng
distribuerad Om du vill använda distribuerad träning. Bool
earlyStopping Aktivera tidig stopplogik under träning. Bool
earlyStoppingDelay Minsta antal epoker eller valideringsutvärderingar som ska vänta innan den primära måttförbättringen
spåras för tidig stoppning. Måste vara ett positivt heltal.
Int
earlyStoppingPatience Minsta antal epoker eller valideringsutvärderingar utan primär måttförbättring före
-körningen stoppas. Måste vara ett positivt heltal.
Int
enableOnnxNormalization Aktivera normalisering vid export av ONNX-modell. Bool
evaluationFrequency Frekvens för att utvärdera valideringsdatauppsättningen för att hämta måttpoäng. Måste vara ett positivt heltal. Int
gradientAccumulationStep Toningsansamling innebär att du kör ett konfigurerat antal "GradAccumulationStep"-steg utan
uppdatera modellvikterna medan du ackumulerar toningarna i dessa steg och sedan använder
de ackumulerade toningarna för att beräkna viktuppdateringarna. Måste vara ett positivt heltal.
Int
imageSize Bildstorlek för träning och validering. Måste vara ett positivt heltal.
Obs! Träningskörningen kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
Int
layerToFreeze Antal lager som ska frysas för modellen. Måste vara ett positivt heltal.
Att till exempel skicka 2 som värde för "seresnext" innebär
frysskikt0 och lager1. En fullständig lista över modeller som stöds och information om lagerfrysning finns i
se: /azure/machine-learning/how-to-auto-train-image-models.
Int
learningRate Inledande inlärningsfrekvens. Måste vara en flottör i intervallet [0, 1]. Int
learningRateScheduler Typ av schemaläggare för inlärningsfrekvens. Måste vara "warmup_cosine" eller "steg". "Ingen"
"Steg"
"WarmupCosine"
maxSize Maximal storlek på bilden som ska skalas om innan den matas till stamnätet.
Måste vara ett positivt heltal. Obs! Träningskörning kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
minSize Minsta storlek på bilden som ska skalas om innan den matas till stamnätet.
Måste vara ett positivt heltal. Obs! Träningskörning kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
modelName Namnet på den modell som ska användas för träning.
Mer information om tillgängliga modeller finns i den officiella dokumentationen:
/azure/machine-learning/how-to-auto-train-image-models.
sträng
modelSize Modellstorlek. Måste vara "liten", "medium", "stor" eller "xlarge".
Obs! Träningskörning kan komma in i CUDA OOM om modellstorleken är för stor.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
"ExtraLarge"
"Stor"
"Medel"
"Ingen"
"Liten"
rörelsemängd Värdet för momentum när optimeraren är "sgd". Måste vara en flottör i intervallet [0, 1]. Int
multiSkala Aktivera flera skalningsbilder genom att variera bildstorleken med +/- 50%.
Obs! Träningskörning kan komma in i CUDA OOM om det inte finns tillräckligt med GPU-minne.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
Bool
nesterov Aktivera nesterov när optimeraren är "sgd". Bool
nmsIouThreshold IOU-tröskelvärde som används vid slutsatsdragning i NMS efter bearbetning. Måste vara en flottör i intervallet [0, 1]. Int
numberOfEpochs Antal träningsepoker. Måste vara ett positivt heltal. Int
numberOfWorkers Antal datainläsningsarbetare. Måste vara ett icke-negativt heltal. Int
Optimizer Typ av optimerare. "Adam"
"Adamw"
"Ingen"
"Sgd"
randomSeed Slumpmässigt frö som ska användas vid användning av deterministisk träning. Int
stepLRGamma Värdet för gamma när learning rate scheduler är "step". Måste vara en flottör i intervallet [0, 1]. Int
stepLRStepSize Värdet för stegstorlek när schemaläggaren för inlärningsfrekvens är "steg". Måste vara ett positivt heltal. Int
tileGridSize Rutnätsstorleken som ska användas för att sida vid sida vid varje bild. Obs! TileGridSize får inte vara
Ingen för att aktivera logik för identifiering av små objekt. En sträng som innehåller två heltal i mxn-format.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
tileOverlapRatio Överlappningsförhållande mellan intilliggande paneler i varje dimension. Måste vara flytande i intervallet [0, 1).
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
tilePredictionsNmsThreshold Tröskelvärdet för IOU som ska användas för att utföra NMS vid sammanslagning av förutsägelser från paneler och bilder.
Används i validering/slutsatsdragning. Måste vara flytande i intervallet [0, 1].
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
trainingBatchSize Träningsbatchstorlek. Måste vara ett positivt heltal. Int
validationBatchSize Valideringsbatchstorlek. Måste vara ett positivt heltal. Int
validationIouThreshold Tröskelvärde för IOU som ska användas vid beräkning av valideringsmått. Måste vara flytande i intervallet [0, 1]. Int
validationMetricType Beräkningsmetod för mått som ska användas för valideringsmått. "Coco"
"CocoVoc"
"Ingen"
"Voc"
warmupCosineLRCycles Värdet för cosinincykeln när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara en flottör i intervallet [0, 1]. Int
warmupCosineLRWarmupEpochs Värdet för uppvärmningsepoker när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara ett positivt heltal. Int
weightDecay Värdet för viktförfall när optimeraren är "sgd", "adam" eller "adamw". Måste vara en float i intervallet[0, 1]. Int

ImageModelDistributionSettingsObjectDetection

Namn Beskrivning Värde
amsGradient Aktivera AMSGrad när optimeraren är "adam" eller "adamw". sträng
Stödsystem Inställningar för att använda förhöjda inställningar. sträng
beta1 Värdet för "beta1" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. sträng
beta2 Värdet för "beta2" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. sträng
boxDetectionsPerImage Maximalt antal identifieringar per bild för alla klasser. Måste vara ett positivt heltal.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
boxScoreThreshold Under slutsatsdragningen returnerar du endast förslag med en klassificeringspoäng som är större än
BoxScoreThreshold. Måste vara en float i intervallet[0, 1].
sträng
distribuerad Om distributionsträning ska användas. sträng
earlyStopping Aktivera tidig stopplogik under träning. sträng
earlyStoppingDelay Minsta antal epoker eller valideringsutvärderingar som ska vänta innan den primära måttförbättringen
spåras för tidig stoppning. Måste vara ett positivt heltal.
sträng
earlyStoppingPatience Minsta antal epoker eller valideringsutvärderingar utan primär måttförbättring före
-körningen stoppas. Måste vara ett positivt heltal.
sträng
enableOnnxNormalization Aktivera normalisering vid export av ONNX-modell. sträng
evaluationFrequency Frekvens för att utvärdera valideringsdatauppsättningen för att hämta måttpoäng. Måste vara ett positivt heltal. sträng
gradientAccumulationStep Toningsansamling innebär att du kör ett konfigurerat antal "GradAccumulationStep"-steg utan
uppdatera modellvikterna medan du ackumulerar toningarna i dessa steg och sedan använder
de ackumulerade toningarna för att beräkna viktuppdateringarna. Måste vara ett positivt heltal.
sträng
imageSize Bildstorlek för träning och validering. Måste vara ett positivt heltal.
Obs! Träningskörningen kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
sträng
layerToFreeze Antal lager som ska frysas för modellen. Måste vara ett positivt heltal.
Att till exempel skicka 2 som värde för "seresnext" innebär
frysskikt0 och lager1. En fullständig lista över modeller som stöds och information om lagerfrysning finns i
se: /azure/machine-learning/how-to-auto-train-image-models.
sträng
learningRate Inledande inlärningsfrekvens. Måste vara en flottör i intervallet [0, 1]. sträng
learningRateScheduler Typ av schemaläggare för inlärningsfrekvens. Måste vara "warmup_cosine" eller "steg". sträng
maxSize Maximal storlek på bilden som ska skalas om innan den matas till stamnätet.
Måste vara ett positivt heltal. Obs! Träningskörning kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
minSize Minsta storlek på bilden som ska skalas om innan den matas till stamnätet.
Måste vara ett positivt heltal. Obs! Träningskörning kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
modelName Namnet på den modell som ska användas för träning.
Mer information om tillgängliga modeller finns i den officiella dokumentationen:
/azure/machine-learning/how-to-auto-train-image-models.
sträng
modelSize Modellstorlek. Måste vara "liten", "medium", "stor" eller "xlarge".
Obs! Träningskörning kan komma in i CUDA OOM om modellstorleken är för stor.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
sträng
rörelsemängd Värdet för momentum när optimeraren är "sgd". Måste vara en flottör i intervallet [0, 1]. sträng
multiSkala Aktivera flera skalningsbilder genom att variera bildstorleken med +/- 50%.
Obs! Träningskörning kan komma in i CUDA OOM om det inte finns tillräckligt med GPU-minne.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
sträng
nesterov Aktivera nesterov när optimeraren är "sgd". sträng
nmsIouThreshold IOU-tröskelvärde som används vid slutsatsdragning i NMS efter bearbetning. Måste vara flytande i intervallet [0, 1]. sträng
numberOfEpochs Antal träningsepoker. Måste vara ett positivt heltal. sträng
numberOfWorkers Antal datainläsningsarbetare. Måste vara ett icke-negativt heltal. sträng
Optimizer Typ av optimerare. Måste vara antingen "sgd", "adam" eller "adamw". sträng
randomSeed Slumpmässigt frö som ska användas vid användning av deterministisk träning. sträng
stepLRGamma Värdet för gamma när learning rate scheduler är "step". Måste vara en flottör i intervallet [0, 1]. sträng
stepLRStepSize Värdet för stegstorlek när schemaläggaren för inlärningsfrekvens är "steg". Måste vara ett positivt heltal. sträng
tileGridSize Rutnätsstorleken som ska användas för att sida vid sida vid varje bild. Obs! TileGridSize får inte vara
Ingen för att aktivera logik för identifiering av små objekt. En sträng som innehåller två heltal i mxn-format.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
tileOverlapRatio Överlappningsförhållande mellan intilliggande paneler i varje dimension. Måste vara flytande i intervallet [0, 1).
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
tilePredictionsNmsThreshold Tröskelvärdet för IOU som ska användas för att utföra NMS vid sammanslagning av förutsägelser från paneler och bilder.
Används i validering/slutsatsdragning. Måste vara flytande i intervallet [0, 1].
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
NMS: Icke-maximal undertryckning
sträng
trainingBatchSize Träningsbatchstorlek. Måste vara ett positivt heltal. sträng
validationBatchSize Valideringsbatchstorlek. Måste vara ett positivt heltal. sträng
validationIouThreshold Tröskelvärde för IOU som ska användas vid beräkning av valideringsmått. Måste vara flytande i intervallet [0, 1]. sträng
validationMetricType Beräkningsmetod för mått som ska användas för valideringsmått. Måste vara "none", "coco", "voc" eller "coco_voc". sträng
warmupCosineLRCycles Värdet för cosinincykeln när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara en flottör i intervallet [0, 1]. sträng
warmupCosineLRWarmupEpochs Värdet för uppvärmningsepoker när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara ett positivt heltal. sträng
weightDecay Värdet för viktförfall när optimeraren är "sgd", "adam" eller "adamw". Måste vara en float i intervallet[0, 1]. sträng

ImageObjectDetection

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "ImageObjectDetection" (krävs)
limitSettings [Krävs] Begränsa inställningarna för AutoML-jobbet. ImageLimitSettings (krävs)
modelSettings Inställningar som används för att träna modellen. ImageModelSettingsObjectDetection
primaryMetric Primärt mått för att optimera för den här uppgiften. "MeanAveragePrecision"
searchSpace Sök efter sampling av olika kombinationer av modeller och deras hyperparametrar. ImageModelDistributionSettingsObjectDetection[]
sweepSettings Sopning av modeller och hyperparametrar som sveper relaterade inställningar. ImageSweepSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int

Regression

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "Regression" (krävs)
cvSplitColumnNames Kolumner som ska användas för CVSplit-data. string[]
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. TableVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. TableVerticalLimitSettings
nCrossValidations Antal korsvalideringsdelegeringar som ska tillämpas på träningsdatauppsättningen
när valideringsdatauppsättningen inte har angetts.
NCrossValidations
primaryMetric Primärt mått för regressionsaktivitet. "NormalizedMeanAbsoluteError"
"NormalizedRootMeanSquaredError"
"R2Score"
"SpearmanCorrelation"
testData Testa indata. MLTableJobInput
testDataSize Den del av testdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
trainingSettings Indata för träningsfasen för ett AutoML-jobb. RegressionTrainingSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
weightColumnName Namnet på exempelviktkolumnen. Automatiserad ML stöder en viktad kolumn som indata, vilket gör att rader i data viktas upp eller ned. sträng

RegressionTrainingSettings

Namn Beskrivning Värde
allowedTrainingAlgorithms Tillåtna modeller för regressionsaktivitet. Strängmatris som innehåller något av:
"DecisionTree"
"ElasticNet"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LassoLars"
"LightGBM"
"RandomForest"
"SGD"
"XGBoostRegressor"
blockedTrainingAlgorithms Blockerade modeller för regressionsuppgift. Strängmatris som innehåller något av:
"DecisionTree"
"ElasticNet"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LassoLars"
"LightGBM"
"RandomForest"
"SGD"
"XGBoostRegressor"
enableDnnTraining Aktivera rekommendation för DNN-modeller. Bool
enableModelExplainability Flagga för att aktivera förklaring på bästa modell. Bool
enableOnnxCompatibleModels Flagga för att aktivera onnx-kompatibla modeller. Bool
enableStackEnsemble Aktivera stackensemblekörning. Bool
enableVoteEnsemble Aktivera röstningsensemblekörning. Bool
ensembleModelDownloadTimeout Under VotingEnsemble- och StackEnsemble-modellgenereringen laddas flera anpassade modeller från de tidigare underordnade körningarna ned.
Konfigurera den här parametern med ett högre värde än 300 sekunder om det behövs mer tid.
sträng
stackEnsembleSettings Inställningar för stackensembler för stackensemblekörning. StackEnsembleSettings

Textklassificering

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "TextKlassificering" (krävs)
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. NlpVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. NlpVerticalLimitSettings
primaryMetric Primärt mått för Text-Classification uppgift. "AUCWeighted"
"Noggrannhet"
"AveragePrecisionScoreWeighted"
"NormMacroRecall"
"PrecisionScoreWeighted"
validationData Indata för valideringsdata. MLTableJobInput

NlpVerticalFeaturizationSettings

Namn Beskrivning Värde
datasetLanguage Datamängdsspråk, användbart för textdata. sträng

NlpVerticalLimitSettings

Namn Beskrivning Värde
maxConcurrentTrials Maximalt antal samtidiga AutoML-iterationer. Int
maxTrials Antal AutoML-iterationer. Int
Timeout Tidsgräns för AutoML-jobb. sträng

TextClassificationMultilabel

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "TextClassificationMultilabel" (krävs)
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. NlpVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. NlpVerticalLimitSettings
validationData Indata för valideringsdata. MLTableJobInput

Textner

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "TextNER" (krävs)
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. NlpVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. NlpVerticalLimitSettings
validationData Indata för valideringsdata. MLTableJobInput

Kommandojobb

Namn Beskrivning Värde
jobType [Krävs] Anger typen av jobb. "Kommando" (krävs)
codeId ARM-resurs-ID för kodtillgången. sträng
befallning [Krävs] Kommandot som ska köras vid start av jobbet. T.ex. "python train.py" sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
fördelning Distributionskonfiguration för jobbet. Om detta anges ska det vara en av Mpi, Tensorflow, PyTorch eller null. DistributionKonfiguration
environmentId [Krävs] ARM-resurs-ID för miljöspecifikationen för jobbet. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
environmentVariables Miljövariabler som ingår i jobbet. CommandJobEnvironmentVariables
Ingångar Mappning av indatabindningar som används i jobbet. CommandJobInputs
Gränser Gräns för kommandojobb. CommandJobLimits
Utgångar Mappning av utdatabindningar som används i jobbet. CommandJobOutputs
queueSettings Köinställningar för jobbet QueueSettings
Resurser Beräkningsresurskonfiguration för jobbet. JobResourceConfiguration

DistributionKonfiguration

Namn Beskrivning Värde
distributionType Ange objekttyp Mpi
PyTorch
TensorFlow (krävs)

Mpi

Namn Beskrivning Värde
distributionType [Krävs] Anger typ av distributionsramverk. "Mpi" (krävs)
processCountPerInstance Antal processer per MPI-nod. Int

PyTorch

Namn Beskrivning Värde
distributionType [Krävs] Anger typ av distributionsramverk. "PyTorch" (krävs)
processCountPerInstance Antal processer per nod. Int

TensorFlow

Namn Beskrivning Värde
distributionType [Krävs] Anger typ av distributionsramverk. "TensorFlow" (krävs)
parameterServerCount Antal parameterserveruppgifter. Int
workerCount Antal arbetare. Om det inte anges kommer instansantalet att vara standard. Int

CommandJobEnvironmentVariables

Namn Beskrivning Värde
{anpassad egenskap} sträng

CommandJobInputs

Namn Beskrivning Värde
{anpassad egenskap} JobInput

JobInput

Namn Beskrivning Värde
beskrivning Beskrivning av indata. sträng
jobInputType Ange objekttyp custom_model
literal
mlflow_model
mltable
triton_model
uri_file
uri_folder (krävs)

CustomModelJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "custom_model" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

LiteralJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "literal" (krävs)
värde [Krävs] Literalvärde för indata. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

TritonModelJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "triton_model" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

UriFileJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "uri_file" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

UriFolderJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "uri_folder" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

CommandJobLimits

Namn Beskrivning Värde
jobLimitsType [Krävs] JobLimit-typ. "Kommando"
"Svep" (krävs)
Timeout Den maximala körningstiden i ISO 8601-format, varefter jobbet avbryts. Stöder endast varaktighet med så låg precision som Sekunder. sträng

CommandJobOutputs

Namn Beskrivning Värde
{anpassad egenskap} JobOutput

PipelineJob

Namn Beskrivning Värde
jobType [Krävs] Anger typen av jobb. "Pipeline" (krävs)
Ingångar Indata för pipelinejobbet. PipelineJobInputs
Jobb Jobb konstruerar pipelinejobbet. PipelineJobJobs
Utgångar Utdata för pipelinejobbet PipelineJobOutputs
Inställningar Pipelineinställningar, till exempel ContinueRunOnStepFailure osv.
sourceJobId ARM-resurs-ID för källjobbet. sträng

PipelineJobInputs

Namn Beskrivning Värde
{anpassad egenskap} JobInput

PipelineJobJobs

Namn Beskrivning Värde
{anpassad egenskap}

PipelineJobOutputs

Namn Beskrivning Värde
{anpassad egenskap} JobOutput

SweepJob

Namn Beskrivning Värde
jobType [Krävs] Anger typen av jobb. "Svep" (krävs)
earlyTermination Principer för tidig uppsägning gör det möjligt att avbryta dåliga körningar innan de slutförs EarlyTerminationPolicy
Ingångar Mappning av indatabindningar som används i jobbet. SweepJobInputs
Gränser Rensa jobbgräns. SweepJobLimits
objektiv [Krävs] Optimeringsmål. Mål (krävs)
Utgångar Mappning av utdatabindningar som används i jobbet. SweepJobOutputs
queueSettings Köinställningar för jobbet QueueSettings
samplingAlgorithm [Krävs] Algoritmen för hyperparametersampling SamplingAlgorithm (krävs)
searchSpace [Krävs] En ordlista som innehåller varje parameter och dess distribution. Ordlistenyckeln är namnet på parametern
rättegång [Krävs] Utvärderingskomponentdefinition. TrialComponent (krävs)

SweepJobInputs

Namn Beskrivning Värde
{anpassad egenskap} JobInput

SweepJobLimits

Namn Beskrivning Värde
jobLimitsType [Krävs] JobLimit-typ. "Kommando"
"Svep" (krävs)
maxConcurrentTrials Sopa jobb max samtidiga utvärderingsversioner. Int
maxTotalTrials Sopa jobb max totalt antal utvärderingsversioner. Int
Timeout Den maximala körningstiden i ISO 8601-format, varefter jobbet avbryts. Stöder endast varaktighet med så låg precision som Sekunder. sträng
trialTimeout Rensa timeout-värdet för utvärderingsversionen av jobbet. sträng

Objektiv

Namn Beskrivning Värde
mål [Krävs] Definierar måttmål som stöds för justering av hyperparametrar "Maximera"
"Minimera" (krävs)
primaryMetric [Krävs] Namnet på måttet som ska optimeras. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

SweepJobOutputs

Namn Beskrivning Värde
{anpassad egenskap} JobOutput

SamplingAlgorithm

Namn Beskrivning Värde
samplingAlgorithmType Ange objekttyp Bayesianska
Grid
Slumpmässig (krävs)

BayesianSamplingAlgorithm

Namn Beskrivning Värde
samplingAlgorithmType [Krävs] Algoritmen som används för att generera hyperparametervärden, tillsammans med konfigurationsegenskaper "Bayesian" (krävs)

GridSamplingAlgorithm

Namn Beskrivning Värde
samplingAlgorithmType [Krävs] Algoritmen som används för att generera hyperparametervärden, tillsammans med konfigurationsegenskaper "Rutnät" (krävs)

RandomSamplingAlgorithm

Namn Beskrivning Värde
samplingAlgorithmType [Krävs] Algoritmen som används för att generera hyperparametervärden, tillsammans med konfigurationsegenskaper "Random" (krävs)
regel Den specifika typen av slumpmässig algoritm "Slumpmässigt"
"Sobol"
frö Ett valfritt heltal som ska användas som frö för slumptalsgenerering Int

TrialComponent

Namn Beskrivning Värde
codeId ARM-resurs-ID för kodtillgången. sträng
befallning [Krävs] Kommandot som ska köras vid start av jobbet. T.ex. "python train.py" sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
fördelning Distributionskonfiguration för jobbet. Om detta anges ska det vara en av Mpi, Tensorflow, PyTorch eller null. DistributionKonfiguration
environmentId [Krävs] ARM-resurs-ID för miljöspecifikationen för jobbet. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
environmentVariables Miljövariabler som ingår i jobbet. TrialComponentEnvironmentVariables
Resurser Beräkningsresurskonfiguration för jobbet. JobResourceConfiguration

TrialComponentEnvironmentVariables

Namn Beskrivning Värde
{anpassad egenskap} sträng

CreateMonitorAction

Namn Beskrivning Värde
actionType [Krävs] Anger åtgärdstypen för schemat "CreateMonitor" (krävs)
monitorDefinition [Krävs] Definierar övervakaren. MonitorDefinition (krävs)

MonitorDefinition

Namn Beskrivning Värde
alertNotificationSettings Övervakarens meddelandeinställningar. MonitorNotificationSettings
computeConfiguration [Krävs] ARM-resurs-ID för beräkningsresursen som övervakningsjobbet ska köras på. MonitorComputeConfigurationBase (krävs)
monitoringTarget De entiteter som övervakaren riktar in sig på. MonitoringTarget
Signaler [Krävs] Signalerna som ska övervakas. MonitorDefinitionSignals (krävs)

MonitorNotificationSettings

Namn Beskrivning Värde
emailNotificationSettings E-postinställningarna för AML-meddelanden. MonitorEmailNotificationSettings

MonitorEmailNotificationSettings

Namn Beskrivning Värde
e-postmeddelanden Listan över e-postmottagare som har en begränsning på totalt 499 tecken. string[]

MonitorComputeConfigurationBase

Namn Beskrivning Värde
computeType Ange objekttyp ServerlessSpark- (krävs)

MonitorServerlessSparkCompute

Namn Beskrivning Värde
computeType [Krävs] Anger vilken typ av signal som ska övervakas. "ServerlessSpark" (krävs)
computeIdentity [Krävs] Identitetsschemat som används av spark-jobben som körs på serverlösa Spark. MonitorComputeIdentityBase (krävs)
instanceType [Krävs] Instanstypen som kör Spark-jobbet. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
runtimeVersion [Krävs] Spark-körningsversionen. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = ^[0-9]+\.[0-9]+$

MonitorComputeIdentityBase

Namn Beskrivning Värde
computeIdentityType Ange objekttyp AmlToken
ManagedIdentity (krävs)

AmlTokenComputeIdentity

Namn Beskrivning Värde
computeIdentityType [Krävs] Anger vilken typ av identitet som ska användas i övervakningsjobben. "AmlToken" (krävs)

ManagedComputeIdentity

Namn Beskrivning Värde
computeIdentityType [Krävs] Anger vilken typ av identitet som ska användas i övervakningsjobben. "ManagedIdentity" (krävs)
identitet Den identitet som ska användas av övervakningsjobben. ManagedServiceIdentity

ManagedServiceIdentity

Namn Beskrivning Värde
typ Typ av hanterad tjänstidentitet (där både SystemAssigned- och UserAssigned-typer tillåts). "Ingen"
"SystemAssigned"
"SystemAssigned,UserAssigned"
"UserAssigned" (krävs)
userAssignedIdentities Uppsättningen användartilldelade identiteter som är associerade med resursen. Ordlistenycklarna userAssignedIdentities är ARM-resurs-ID:er i formuläret: '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}. Ordlistevärdena kan vara tomma objekt ({}) i begäranden. UserAssignedIdentiteter

UserAssignedIdentiteter

Namn Beskrivning Värde
{anpassad egenskap} UserAssignedIdentity

UserAssignedIdentity

Det här objektet innehåller inga egenskaper som ska anges under distributionen. Alla egenskaper är ReadOnly.

MonitoringTarget

Namn Beskrivning Värde
deploymentId Referens till distributionstillgången som den här övervakaren riktar in sig på. sträng
modelId Referens till den modelltillgång som den här övervakaren riktar in sig på. sträng
taskType [Krävs] Maskininlärningsaktivitetstypen för den övervakade modellen. "Klassificering"
"Regression" (krävs)

MonitorDefinitionSignals

Namn Beskrivning Värde
{anpassad egenskap} MonitoringSignalBase

MonitoringSignalBase

Namn Beskrivning Värde
notificationTypes Det aktuella meddelandeläget för den här signalen. Strängmatris som innehåller något av:
"AmlNotification"
Egenskaper Egenskapsordlista. Egenskaper kan läggas till, men inte tas bort eller ändras. MonitoringSignalBaseProperties
signalType Ange objekttyp Anpassad
DataDrift
DataQuality
FeatureAttributionDrift
PredictionDrift (krävs)

MonitoringSignalBaseProperties

Namn Beskrivning Värde
{anpassad egenskap} sträng

CustomMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "Anpassad" (krävs)
componentId [Krävs] Referens till komponenttillgången som används för att beräkna anpassade mått. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
inputAssets Övervaka tillgångar att ta som indata. Nyckeln är komponentens portnamn för indata, värdet är datatillgången. CustomMonitoringSignalInputAssets
Ingångar Extra komponentparametrar att ta som indata. Nyckeln är det komponentliterala indataportnamnet, värdet är parametervärdet. CustomMonitoringSignalInputs
metricThresholds [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. CustomMetricThreshold[] (krävs)

CustomMonitoringSignalInputAssets

Namn Beskrivning Värde
{anpassad egenskap} MonitoringInputDataBase

MonitoringInputDataBase

Namn Beskrivning Värde
Kolumner Mappning av kolumnnamn till särskilda användningsområden. MonitoringInputDataBaseColumns
dataContext Datakällans kontextmetadata. sträng
jobInputType [Krävs] Anger typen av jobb. "custom_model"
"literal"
"mlflow_model"
"mltable"
"triton_model"
"uri_file"
"uri_folder" (krävs)
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
inputDataType Ange objekttyp fast
rullande
Statisk (krävs)

MonitoringInputDataBaseColumns

Namn Beskrivning Värde
{anpassad egenskap} sträng

FixedInputData

Namn Beskrivning Värde
inputDataType [Krävs] Anger vilken typ av signal som ska övervakas. "Fast" (krävs)

RollingInputData

Namn Beskrivning Värde
inputDataType [Krävs] Anger vilken typ av signal som ska övervakas. "Rullande" (krävs)
preprocessingComponentId Referens till komponenttillgången som används för att förbearbeta data. sträng
windowOffset [Krävs] Tidsförskjutningen mellan slutet av datafönstret och övervakarens aktuella körningstid. sträng (krävs)
windowSize [Krävs] Storleken på det rullande datafönstret. sträng (krävs)

StaticInputData

Namn Beskrivning Värde
inputDataType [Krävs] Anger vilken typ av signal som ska övervakas. "Statisk" (krävs)
preprocessingComponentId Referens till komponenttillgången som används för att förbearbeta data. sträng
windowEnd [Krävs] Slutdatumet för datafönstret. sträng (krävs)
windowStart [Krävs] Startdatumet för datafönstret. sträng (krävs)

CustomMonitoringSignalInputs

Namn Beskrivning Värde
{anpassad egenskap} JobInput

CustomMetricThreshold

Namn Beskrivning Värde
metrisk [Krävs] Det användardefinierade mått som ska beräknas. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold

MonitoringThreshold

Namn Beskrivning Värde
värde Tröskelvärdet. Om värdet är null är standardinställningen beroende av måtttypen. Int

DataDriftMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "DataDrift" (krävs)
featureDataTypeOverride En ordlista som mappar funktionsnamn till respektive datatyper. DataDriftMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings Inställningarna för funktionsvikt för databehandling. FeatureImportanceSettings
Funktioner Funktionsfiltret som identifierar vilken funktion som ska beräkna överdrift. MonitoringFeatureFilterBase
metricThresholds [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. DataDriftMetricThresholdBase[] (krävs)
productionData [Krävs] De data som avdriften beräknas för. MonitoringInputDataBase (krävs)
referenceData [Krävs] Data som ska beräknas avdrift mot. MonitoringInputDataBase (krävs)

DataDriftMonitoringSignalFeatureDataTypeOverride

Namn Beskrivning Värde
{anpassad egenskap} "Kategorisk"
"Numeriskt"

FeatureImportanceSettings

Namn Beskrivning Värde
läge Funktionssättet för beräkning av funktionsvikt. "Inaktiverad"
"Aktiverad"
targetColumn Namnet på målkolumnen i indatatillgången. sträng

MonitoringFeatureFilterBase

Namn Beskrivning Värde
filterType Ange objekttyp AllFeatures
FeatureSubset
TopNByAttribution (krävs)

Allafeatures

Namn Beskrivning Värde
filterType [Krävs] Anger det funktionsfilter som ska användas när du väljer funktioner för att beräkna mått över. "AllFeatures" (krävs)

FeatureSubset

Namn Beskrivning Värde
filterType [Krävs] Anger det funktionsfilter som ska användas när du väljer funktioner för att beräkna mått över. "FeatureSubset" (krävs)
Funktioner [Krävs] Listan över funktioner som ska inkluderas. string[] (krävs)

TopNFeaturesByAttribution

Namn Beskrivning Värde
filterType [Krävs] Anger det funktionsfilter som ska användas när du väljer funktioner för att beräkna mått över. "TopNByAttribution" (krävs)
topp Antalet viktigaste funktioner som ska inkluderas. Int

DataDriftMetricThresholdBase

Namn Beskrivning Värde
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold
Datatyp Ange objekttyp kategorisk
numeriska (krävs)

CategoricalDataDriftMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Kategorisk" (krävs)
metrisk [Krävs] Det kategoriska dataavvikelsemåttet som ska beräknas. "JensenShannonDistance"
"PearsonsChiSquaredTest"
"PopulationStabilityIndex" (krävs)

NumeriskaDataDriftMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Numeriskt" (krävs)
metrisk [Krävs] Det numeriska dataavvikelsemåttet som ska beräknas. "JensenShannonDistance"
"NormalizedWassersteinDistance"
"PopulationStabilityIndex"
"TwoSampleKolmogorovSmirnovTest" (krävs)

DataQualityMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "DataQuality" (krävs)
featureDataTypeOverride En ordlista som mappar funktionsnamn till respektive datatyper. DataQualityMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings Inställningarna för funktionsvikt för databehandling. FeatureImportanceSettings
Funktioner Funktionerna för att beräkna drift över. MonitoringFeatureFilterBase
metricThresholds [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. DataQualityMetricThresholdBase[] (krävs)
productionData [Krävs] De data som produceras av produktionstjänsten som driften beräknas för. MonitoringInputDataBase (krävs)
referenceData [Krävs] Data som ska beräknas avdrift mot. MonitoringInputDataBase (krävs)

DataQualityMonitoringSignalFeatureDataTypeOverride

Namn Beskrivning Värde
{anpassad egenskap} "Kategorisk"
"Numeriskt"

DataQualityMetricThresholdBase

Namn Beskrivning Värde
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold
Datatyp Ange objekttyp kategorisk
numeriska (krävs)

CategoricalDataQualityMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Kategorisk" (krävs)
metrisk [Krävs] Det kategoriska datakvalitetsmåttet som ska beräknas. "DataTypeErrorRate"
"NullValueRate"
"OutOfBoundsRate" (krävs)

NumeriskadataQualityMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Numeriskt" (krävs)
metrisk [Krävs] Det numeriska datakvalitetsmåttet som ska beräknas. "DataTypeErrorRate"
"NullValueRate"
"OutOfBoundsRate" (krävs)

FeatureAttributionDriftMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "FeatureAttributionDrift" (krävs)
featureDataTypeOverride En ordlista som mappar funktionsnamn till respektive datatyper. FeatureAttributionDriftMonitoringSignalFeatureDataTy...
featureImportanceSettings [Krävs] Inställningarna för funktionsvikt för databehandling. FeatureImportanceSettings (krävs)
metricThreshold [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. FeatureAttributionMetricThreshold (krävs)
productionData [Krävs] De data som avdriften beräknas för. MonitoringInputDataBase[] (krävs)
referenceData [Krävs] Data som ska beräknas avdrift mot. MonitoringInputDataBase (krävs)

FeatureAttributionDriftMonitoringSignalFeatureDataTy...

Namn Beskrivning Värde
{anpassad egenskap} "Kategorisk"
"Numeriskt"

FeatureAttributionMetricThreshold

Namn Beskrivning Värde
metrisk [Krävs] Måttet för funktionstillskrivning som ska beräknas. "NormalizedDiscountedCumulativeGain" (krävs)
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold

PredictionDriftMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "PredictionDrift" (krävs)
featureDataTypeOverride En ordlista som mappar funktionsnamn till respektive datatyper. PredictionDriftMonitoringSignalFeatureDataTypeOverri...
metricThresholds [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. PredictionDriftMetricThresholdBase[] (krävs)
productionData [Krävs] De data som avdriften beräknas för. MonitoringInputDataBase (krävs)
referenceData [Krävs] Data som ska beräknas avdrift mot. MonitoringInputDataBase (krävs)

PredictionDriftMonitoringSignalFeatureDataTypeOverri...

Namn Beskrivning Värde
{anpassad egenskap} "Kategorisk"
"Numeriskt"

PredictionDriftMetricThresholdBase

Namn Beskrivning Värde
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold
Datatyp Ange objekttyp kategorisk
numeriska (krävs)

CategoricalPredictionDriftMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Kategorisk" (krävs)
metrisk [Krävs] Det kategoriska förutsägelseavvikelsemåttet som ska beräknas. "JensenShannonDistance"
"PearsonsChiSquaredTest"
"PopulationStabilityIndex" (krävs)

NumerisktPredictionDriftMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Numeriskt" (krävs)
metrisk [Krävs] Det numeriska förutsägelseavvikelsemåttet som ska beräknas. "JensenShannonDistance"
"NormalizedWassersteinDistance"
"PopulationStabilityIndex"
"TwoSampleKolmogorovSmirnovTest" (krävs)

EndpointScheduleAction

Namn Beskrivning Värde
actionType [Krävs] Anger åtgärdstypen för schemat "InvokeBatchEndpoint" (krävs)
endpointInvocationDefinition [Krävs] Definierar information om schemalägg åtgärdsdefinition.
{se href="TBD" /}

TriggerBase

Namn Beskrivning Värde
endTime Anger sluttid för schemat i ISO 8601, men utan UTC-förskjutning. Se https://en.wikipedia.org/wiki/ISO_8601.
Omkommenterat format skulle vara "2022-06-01T00:00:01"
Om det inte finns körs schemat på obestämd tid
sträng
startTime Anger starttid för schemat i ISO 8601-format, men utan UTC-förskjutning. sträng
timeZone Anger tidszon där schemat körs.
Tidszon bör följa Windows tidszonsformat. Se: /windows-hardware/manufacture/desktop/default-time-zones/>
sträng
triggerType Ange objekttyp Cron
återkommande (krävs)

CronTrigger

Namn Beskrivning Värde
triggerType [Krävs] "Cron" (krävs)
uttryck [Krävs] Anger cron-uttryck för schema.
Uttrycket bör följa formatet NCronTab.
sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

RecurrenceTrigger

Namn Beskrivning Värde
endTime Anger sluttid för schemat i ISO 8601, men utan UTC-förskjutning. Se https://en.wikipedia.org/wiki/ISO_8601.
Omkommenterat format skulle vara "2022-06-01T00:00:01"
Om det inte finns körs schemat på obestämd tid
sträng
frekvens [Krävs] Frekvensen för att utlösa schemat. "Dag"
"Timme"
"Minut"
"Månad"
"Vecka" (krävs)
intervall [Krävs] Anger schemaintervall tillsammans med frekvens int (krävs)
schema Upprepningsschemat. RecurrenceSchedule
startTime Anger starttid för schemat i ISO 8601-format, men utan UTC-förskjutning. sträng
timeZone Anger tidszon där schemat körs.
Tidszon bör följa Windows tidszonsformat. Se: /windows-hardware/manufacture/desktop/default-time-zones
sträng
triggerType [Krävs] "Cron"
"Upprepning" (krävs)

RecurrenceSchedule

Namn Beskrivning Värde
Timmar [Krävs] Lista över timmar för schemat. int[] (krävs)
protokoll [Krävs] Lista över minuter för schemat. int[] (krävs)
monthDays Lista över månadsdagar för schemat int[]
Vardagar Lista över dagar för schemat. Strängmatris som innehåller något av:
"Fredag"
"Måndag"
"Lördag"
"Söndag"
"Torsdag"
"Tisdag"
"Onsdag"

Resursdefinition för Terraform (AzAPI-provider)

Resurstypen arbetsytor/scheman kan distribueras med åtgärder som mål:

  • Resursgrupper

En lista över ändrade egenskaper i varje API-version finns i ändringsloggen.

Resursformat

Om du vill skapa en Microsoft.MachineLearningServices/workspaces/schedules-resurs lägger du till följande Terraform i mallen.

resource "azapi_resource" "symbolicname" {
  type = "Microsoft.MachineLearningServices/workspaces/schedules@2023-10-01"
  name = "string"
  parent_id = "string"
  body = jsonencode({
    properties = {
      action = {
        actionType = "string"
        // For remaining properties, see ScheduleActionBase objects
      }
      description = "string"
      displayName = "string"
      isEnabled = bool
      properties = {
        {customized property} = "string"
      }
      tags = {}
      trigger = {
        endTime = "string"
        startTime = "string"
        timeZone = "string"
        triggerType = "string"
        // For remaining properties, see TriggerBase objects
      }
    }
  })
}

ScheduleActionBase-objekt

Ange egenskapen actionType för att ange typ av objekt.

För CreateJobanvänder du:

  actionType = "CreateJob"
  jobDefinition = {
    componentId = "string"
    computeId = "string"
    description = "string"
    displayName = "string"
    experimentName = "string"
    identity {
      identityType = "string"
      // For remaining properties, see IdentityConfiguration objects
    }
    isArchived = bool
    properties = {
      {customized property} = "string"
    }
    services = {
      {customized property} = {
        endpoint = "string"
        jobServiceType = "string"
        nodes = {
          nodesValueType = "string"
          // For remaining properties, see Nodes objects
        }
        port = int
        properties = {
          {customized property} = "string"
        }
      }
    }
    tags = {}
    jobType = "string"
    // For remaining properties, see JobBaseProperties objects
  }

För CreateMonitoranvänder du:

  actionType = "CreateMonitor"
  monitorDefinition = {
    alertNotificationSettings = {
      emailNotificationSettings = {
        emails = [
          "string"
        ]
      }
    }
    computeConfiguration = {
      computeType = "string"
      // For remaining properties, see MonitorComputeConfigurationBase objects
    }
    monitoringTarget = {
      deploymentId = "string"
      modelId = "string"
      taskType = "string"
    }
    signals = {
      {customized property} = {
        notificationTypes = "AmlNotification"
        properties = {
          {customized property} = "string"
        }
        signalType = "string"
        // For remaining properties, see MonitoringSignalBase objects
      }
    }
  }

För InvokeBatchEndpointanvänder du:

  actionType = "InvokeBatchEndpoint"

JobBaseProperties-objekt

Ange egenskapen jobType för att ange typ av objekt.

För AutoML-använder du:

  jobType = "AutoML"
  environmentId = "string"
  environmentVariables = {
    {customized property} = "string"
  }
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }
  queueSettings = {
    jobTier = "string"
  }
  resources = {
    dockerArgs = "string"
    instanceCount = int
    instanceType = "string"
    properties = {}
    shmSize = "string"
  }
  taskDetails = {
    logVerbosity = "string"
    targetColumnName = "string"
    trainingData = {
      description = "string"
      jobInputType = "string"
      mode = "string"
      uri = "string"
    }
    taskType = "string"
    // For remaining properties, see AutoMLVertical objects
  }

För Kommandoanvänder du:

  jobType = "Command"
  codeId = "string"
  command = "string"
  distribution = {
    distributionType = "string"
    // For remaining properties, see DistributionConfiguration objects
  }
  environmentId = "string"
  environmentVariables = {
    {customized property} = "string"
  }
  inputs = {
    {customized property} = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
  }
  limits = {
    jobLimitsType = "string"
    timeout = "string"
  }
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }
  queueSettings = {
    jobTier = "string"
  }
  resources = {
    dockerArgs = "string"
    instanceCount = int
    instanceType = "string"
    properties = {}
    shmSize = "string"
  }

För Pipelineanvänder du:

  jobType = "Pipeline"
  inputs = {
    {customized property} = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
  }
  jobs = {}
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }
  sourceJobId = "string"

För Svepanvänder du:

  jobType = "Sweep"
  earlyTermination = {
    delayEvaluation = int
    evaluationInterval = int
    policyType = "string"
    // For remaining properties, see EarlyTerminationPolicy objects
  }
  inputs = {
    {customized property} = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
  }
  limits = {
    jobLimitsType = "string"
    maxConcurrentTrials = int
    maxTotalTrials = int
    timeout = "string"
    trialTimeout = "string"
  }
  objective = {
    goal = "string"
    primaryMetric = "string"
  }
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }
  queueSettings = {
    jobTier = "string"
  }
  samplingAlgorithm = {
    samplingAlgorithmType = "string"
    // For remaining properties, see SamplingAlgorithm objects
  }
  trial = {
    codeId = "string"
    command = "string"
    distribution = {
      distributionType = "string"
      // For remaining properties, see DistributionConfiguration objects
    }
    environmentId = "string"
    environmentVariables = {
      {customized property} = "string"
    }
    resources = {
      dockerArgs = "string"
      instanceCount = int
      instanceType = "string"
      properties = {}
      shmSize = "string"
    }
  }

IdentityConfiguration-objekt

Ange egenskapen identityType för att ange typ av objekt.

För AMLTokenanvänder du:

  identityType = "AMLToken"

För Managedanvänder du:

  identityType = "Managed"
  clientId = "string"
  objectId = "string"
  resourceId = "string"

För UserIdentityanvänder du:

  identityType = "UserIdentity"

Nodobjekt

Ange egenskapen nodesValueType för att ange typ av objekt.

För Allaanvänder du:

  nodesValueType = "All"

JobOutput-objekt

Ange egenskapen jobOutputType för att ange typ av objekt.

För custom_modelanvänder du:

  jobOutputType = "custom_model"
  mode = "string"
  uri = "string"

För mlflow_modelanvänder du:

  jobOutputType = "mlflow_model"
  mode = "string"
  uri = "string"

För mltableanvänder du:

  jobOutputType = "mltable"
  mode = "string"
  uri = "string"

För triton_modelanvänder du:

  jobOutputType = "triton_model"
  mode = "string"
  uri = "string"

För uri_fileanvänder du:

  jobOutputType = "uri_file"
  mode = "string"
  uri = "string"

För uri_folderanvänder du:

  jobOutputType = "uri_folder"
  mode = "string"
  uri = "string"

AutoMLVertical-objekt

Ange egenskapen taskType för att ange typ av objekt.

För Klassificeringanvänder du:

  taskType = "Classification"
  cvSplitColumnNames = [
    "string"
  ]
  featurizationSettings = {
    blockedTransformers = [
      "string"
    ]
    columnNameAndTypes = {
      {customized property} = "string"
    }
    datasetLanguage = "string"
    enableDnnFeaturization = bool
    mode = "string"
    transformerParams = {
      {customized property} = [
        {
          fields = [
            "string"
          ]
        }
      ]
    }
  }
  limitSettings = {
    enableEarlyTermination = bool
    exitScore = int
    maxConcurrentTrials = int
    maxCoresPerTrial = int
    maxTrials = int
    timeout = "string"
    trialTimeout = "string"
  }
  nCrossValidations = {
    mode = "string"
    // For remaining properties, see NCrossValidations objects
  }
  positiveLabel = "string"
  primaryMetric = "string"
  testData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }
  testDataSize = int
  trainingSettings = {
    allowedTrainingAlgorithms = [
      "string"
    ]
    blockedTrainingAlgorithms = [
      "string"
    ]
    enableDnnTraining = bool
    enableModelExplainability = bool
    enableOnnxCompatibleModels = bool
    enableStackEnsemble = bool
    enableVoteEnsemble = bool
    ensembleModelDownloadTimeout = "string"
    stackEnsembleSettings = {
      stackMetaLearnerTrainPercentage = int
      stackMetaLearnerType = "string"
    }
  }
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }
  validationDataSize = int
  weightColumnName = "string"

För Prognostiseringanvänder du:

  taskType = "Forecasting"
  cvSplitColumnNames = [
    "string"
  ]
  featurizationSettings = {
    blockedTransformers = [
      "string"
    ]
    columnNameAndTypes = {
      {customized property} = "string"
    }
    datasetLanguage = "string"
    enableDnnFeaturization = bool
    mode = "string"
    transformerParams = {
      {customized property} = [
        {
          fields = [
            "string"
          ]
        }
      ]
    }
  }
  forecastingSettings = {
    countryOrRegionForHolidays = "string"
    cvStepSize = int
    featureLags = "string"
    forecastHorizon = {
      mode = "string"
      // For remaining properties, see ForecastHorizon objects
    }
    frequency = "string"
    seasonality = {
      mode = "string"
      // For remaining properties, see Seasonality objects
    }
    shortSeriesHandlingConfig = "string"
    targetAggregateFunction = "string"
    targetLags = {
      mode = "string"
      // For remaining properties, see TargetLags objects
    }
    targetRollingWindowSize = {
      mode = "string"
      // For remaining properties, see TargetRollingWindowSize objects
    }
    timeColumnName = "string"
    timeSeriesIdColumnNames = [
      "string"
    ]
    useStl = "string"
  }
  limitSettings = {
    enableEarlyTermination = bool
    exitScore = int
    maxConcurrentTrials = int
    maxCoresPerTrial = int
    maxTrials = int
    timeout = "string"
    trialTimeout = "string"
  }
  nCrossValidations = {
    mode = "string"
    // For remaining properties, see NCrossValidations objects
  }
  primaryMetric = "string"
  testData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }
  testDataSize = int
  trainingSettings = {
    allowedTrainingAlgorithms = [
      "string"
    ]
    blockedTrainingAlgorithms = [
      "string"
    ]
    enableDnnTraining = bool
    enableModelExplainability = bool
    enableOnnxCompatibleModels = bool
    enableStackEnsemble = bool
    enableVoteEnsemble = bool
    ensembleModelDownloadTimeout = "string"
    stackEnsembleSettings = {
      stackMetaLearnerTrainPercentage = int
      stackMetaLearnerType = "string"
    }
  }
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }
  validationDataSize = int
  weightColumnName = "string"

För ImageClassificationanvänder du:

  taskType = "ImageClassification"
  limitSettings = {
    maxConcurrentTrials = int
    maxTrials = int
    timeout = "string"
  }
  modelSettings = {
    advancedSettings = "string"
    amsGradient = bool
    augmentations = "string"
    beta1 = int
    beta2 = int
    checkpointFrequency = int
    checkpointModel = {
      description = "string"
      jobInputType = "string"
      mode = "string"
      uri = "string"
    }
    checkpointRunId = "string"
    distributed = bool
    earlyStopping = bool
    earlyStoppingDelay = int
    earlyStoppingPatience = int
    enableOnnxNormalization = bool
    evaluationFrequency = int
    gradientAccumulationStep = int
    layersToFreeze = int
    learningRate = int
    learningRateScheduler = "string"
    modelName = "string"
    momentum = int
    nesterov = bool
    numberOfEpochs = int
    numberOfWorkers = int
    optimizer = "string"
    randomSeed = int
    stepLRGamma = int
    stepLRStepSize = int
    trainingBatchSize = int
    trainingCropSize = int
    validationBatchSize = int
    validationCropSize = int
    validationResizeSize = int
    warmupCosineLRCycles = int
    warmupCosineLRWarmupEpochs = int
    weightDecay = int
    weightedLoss = int
  }
  primaryMetric = "string"
  searchSpace = [
    {
      amsGradient = "string"
      augmentations = "string"
      beta1 = "string"
      beta2 = "string"
      distributed = "string"
      earlyStopping = "string"
      earlyStoppingDelay = "string"
      earlyStoppingPatience = "string"
      enableOnnxNormalization = "string"
      evaluationFrequency = "string"
      gradientAccumulationStep = "string"
      layersToFreeze = "string"
      learningRate = "string"
      learningRateScheduler = "string"
      modelName = "string"
      momentum = "string"
      nesterov = "string"
      numberOfEpochs = "string"
      numberOfWorkers = "string"
      optimizer = "string"
      randomSeed = "string"
      stepLRGamma = "string"
      stepLRStepSize = "string"
      trainingBatchSize = "string"
      trainingCropSize = "string"
      validationBatchSize = "string"
      validationCropSize = "string"
      validationResizeSize = "string"
      warmupCosineLRCycles = "string"
      warmupCosineLRWarmupEpochs = "string"
      weightDecay = "string"
      weightedLoss = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }
  validationDataSize = int

För ImageClassificationMultilabelanvänder du:

  taskType = "ImageClassificationMultilabel"
  limitSettings = {
    maxConcurrentTrials = int
    maxTrials = int
    timeout = "string"
  }
  modelSettings = {
    advancedSettings = "string"
    amsGradient = bool
    augmentations = "string"
    beta1 = int
    beta2 = int
    checkpointFrequency = int
    checkpointModel = {
      description = "string"
      jobInputType = "string"
      mode = "string"
      uri = "string"
    }
    checkpointRunId = "string"
    distributed = bool
    earlyStopping = bool
    earlyStoppingDelay = int
    earlyStoppingPatience = int
    enableOnnxNormalization = bool
    evaluationFrequency = int
    gradientAccumulationStep = int
    layersToFreeze = int
    learningRate = int
    learningRateScheduler = "string"
    modelName = "string"
    momentum = int
    nesterov = bool
    numberOfEpochs = int
    numberOfWorkers = int
    optimizer = "string"
    randomSeed = int
    stepLRGamma = int
    stepLRStepSize = int
    trainingBatchSize = int
    trainingCropSize = int
    validationBatchSize = int
    validationCropSize = int
    validationResizeSize = int
    warmupCosineLRCycles = int
    warmupCosineLRWarmupEpochs = int
    weightDecay = int
    weightedLoss = int
  }
  primaryMetric = "string"
  searchSpace = [
    {
      amsGradient = "string"
      augmentations = "string"
      beta1 = "string"
      beta2 = "string"
      distributed = "string"
      earlyStopping = "string"
      earlyStoppingDelay = "string"
      earlyStoppingPatience = "string"
      enableOnnxNormalization = "string"
      evaluationFrequency = "string"
      gradientAccumulationStep = "string"
      layersToFreeze = "string"
      learningRate = "string"
      learningRateScheduler = "string"
      modelName = "string"
      momentum = "string"
      nesterov = "string"
      numberOfEpochs = "string"
      numberOfWorkers = "string"
      optimizer = "string"
      randomSeed = "string"
      stepLRGamma = "string"
      stepLRStepSize = "string"
      trainingBatchSize = "string"
      trainingCropSize = "string"
      validationBatchSize = "string"
      validationCropSize = "string"
      validationResizeSize = "string"
      warmupCosineLRCycles = "string"
      warmupCosineLRWarmupEpochs = "string"
      weightDecay = "string"
      weightedLoss = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }
  validationDataSize = int

För ImageInstanceSegmentationanvänder du:

  taskType = "ImageInstanceSegmentation"
  limitSettings = {
    maxConcurrentTrials = int
    maxTrials = int
    timeout = "string"
  }
  modelSettings = {
    advancedSettings = "string"
    amsGradient = bool
    augmentations = "string"
    beta1 = int
    beta2 = int
    boxDetectionsPerImage = int
    boxScoreThreshold = int
    checkpointFrequency = int
    checkpointModel = {
      description = "string"
      jobInputType = "string"
      mode = "string"
      uri = "string"
    }
    checkpointRunId = "string"
    distributed = bool
    earlyStopping = bool
    earlyStoppingDelay = int
    earlyStoppingPatience = int
    enableOnnxNormalization = bool
    evaluationFrequency = int
    gradientAccumulationStep = int
    imageSize = int
    layersToFreeze = int
    learningRate = int
    learningRateScheduler = "string"
    maxSize = int
    minSize = int
    modelName = "string"
    modelSize = "string"
    momentum = int
    multiScale = bool
    nesterov = bool
    nmsIouThreshold = int
    numberOfEpochs = int
    numberOfWorkers = int
    optimizer = "string"
    randomSeed = int
    stepLRGamma = int
    stepLRStepSize = int
    tileGridSize = "string"
    tileOverlapRatio = int
    tilePredictionsNmsThreshold = int
    trainingBatchSize = int
    validationBatchSize = int
    validationIouThreshold = int
    validationMetricType = "string"
    warmupCosineLRCycles = int
    warmupCosineLRWarmupEpochs = int
    weightDecay = int
  }
  primaryMetric = "MeanAveragePrecision"
  searchSpace = [
    {
      amsGradient = "string"
      augmentations = "string"
      beta1 = "string"
      beta2 = "string"
      boxDetectionsPerImage = "string"
      boxScoreThreshold = "string"
      distributed = "string"
      earlyStopping = "string"
      earlyStoppingDelay = "string"
      earlyStoppingPatience = "string"
      enableOnnxNormalization = "string"
      evaluationFrequency = "string"
      gradientAccumulationStep = "string"
      imageSize = "string"
      layersToFreeze = "string"
      learningRate = "string"
      learningRateScheduler = "string"
      maxSize = "string"
      minSize = "string"
      modelName = "string"
      modelSize = "string"
      momentum = "string"
      multiScale = "string"
      nesterov = "string"
      nmsIouThreshold = "string"
      numberOfEpochs = "string"
      numberOfWorkers = "string"
      optimizer = "string"
      randomSeed = "string"
      stepLRGamma = "string"
      stepLRStepSize = "string"
      tileGridSize = "string"
      tileOverlapRatio = "string"
      tilePredictionsNmsThreshold = "string"
      trainingBatchSize = "string"
      validationBatchSize = "string"
      validationIouThreshold = "string"
      validationMetricType = "string"
      warmupCosineLRCycles = "string"
      warmupCosineLRWarmupEpochs = "string"
      weightDecay = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }
  validationDataSize = int

För ImageObjectDetectionanvänder du:

  taskType = "ImageObjectDetection"
  limitSettings = {
    maxConcurrentTrials = int
    maxTrials = int
    timeout = "string"
  }
  modelSettings = {
    advancedSettings = "string"
    amsGradient = bool
    augmentations = "string"
    beta1 = int
    beta2 = int
    boxDetectionsPerImage = int
    boxScoreThreshold = int
    checkpointFrequency = int
    checkpointModel = {
      description = "string"
      jobInputType = "string"
      mode = "string"
      uri = "string"
    }
    checkpointRunId = "string"
    distributed = bool
    earlyStopping = bool
    earlyStoppingDelay = int
    earlyStoppingPatience = int
    enableOnnxNormalization = bool
    evaluationFrequency = int
    gradientAccumulationStep = int
    imageSize = int
    layersToFreeze = int
    learningRate = int
    learningRateScheduler = "string"
    maxSize = int
    minSize = int
    modelName = "string"
    modelSize = "string"
    momentum = int
    multiScale = bool
    nesterov = bool
    nmsIouThreshold = int
    numberOfEpochs = int
    numberOfWorkers = int
    optimizer = "string"
    randomSeed = int
    stepLRGamma = int
    stepLRStepSize = int
    tileGridSize = "string"
    tileOverlapRatio = int
    tilePredictionsNmsThreshold = int
    trainingBatchSize = int
    validationBatchSize = int
    validationIouThreshold = int
    validationMetricType = "string"
    warmupCosineLRCycles = int
    warmupCosineLRWarmupEpochs = int
    weightDecay = int
  }
  primaryMetric = "MeanAveragePrecision"
  searchSpace = [
    {
      amsGradient = "string"
      augmentations = "string"
      beta1 = "string"
      beta2 = "string"
      boxDetectionsPerImage = "string"
      boxScoreThreshold = "string"
      distributed = "string"
      earlyStopping = "string"
      earlyStoppingDelay = "string"
      earlyStoppingPatience = "string"
      enableOnnxNormalization = "string"
      evaluationFrequency = "string"
      gradientAccumulationStep = "string"
      imageSize = "string"
      layersToFreeze = "string"
      learningRate = "string"
      learningRateScheduler = "string"
      maxSize = "string"
      minSize = "string"
      modelName = "string"
      modelSize = "string"
      momentum = "string"
      multiScale = "string"
      nesterov = "string"
      nmsIouThreshold = "string"
      numberOfEpochs = "string"
      numberOfWorkers = "string"
      optimizer = "string"
      randomSeed = "string"
      stepLRGamma = "string"
      stepLRStepSize = "string"
      tileGridSize = "string"
      tileOverlapRatio = "string"
      tilePredictionsNmsThreshold = "string"
      trainingBatchSize = "string"
      validationBatchSize = "string"
      validationIouThreshold = "string"
      validationMetricType = "string"
      warmupCosineLRCycles = "string"
      warmupCosineLRWarmupEpochs = "string"
      weightDecay = "string"
    }
  ]
  sweepSettings = {
    earlyTermination = {
      delayEvaluation = int
      evaluationInterval = int
      policyType = "string"
      // For remaining properties, see EarlyTerminationPolicy objects
    }
    samplingAlgorithm = "string"
  }
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }
  validationDataSize = int

För Regressionanvänder du:

  taskType = "Regression"
  cvSplitColumnNames = [
    "string"
  ]
  featurizationSettings = {
    blockedTransformers = [
      "string"
    ]
    columnNameAndTypes = {
      {customized property} = "string"
    }
    datasetLanguage = "string"
    enableDnnFeaturization = bool
    mode = "string"
    transformerParams = {
      {customized property} = [
        {
          fields = [
            "string"
          ]
        }
      ]
    }
  }
  limitSettings = {
    enableEarlyTermination = bool
    exitScore = int
    maxConcurrentTrials = int
    maxCoresPerTrial = int
    maxTrials = int
    timeout = "string"
    trialTimeout = "string"
  }
  nCrossValidations = {
    mode = "string"
    // For remaining properties, see NCrossValidations objects
  }
  primaryMetric = "string"
  testData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }
  testDataSize = int
  trainingSettings = {
    allowedTrainingAlgorithms = [
      "string"
    ]
    blockedTrainingAlgorithms = [
      "string"
    ]
    enableDnnTraining = bool
    enableModelExplainability = bool
    enableOnnxCompatibleModels = bool
    enableStackEnsemble = bool
    enableVoteEnsemble = bool
    ensembleModelDownloadTimeout = "string"
    stackEnsembleSettings = {
      stackMetaLearnerTrainPercentage = int
      stackMetaLearnerType = "string"
    }
  }
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }
  validationDataSize = int
  weightColumnName = "string"

För TextClassificationanvänder du:

  taskType = "TextClassification"
  featurizationSettings = {
    datasetLanguage = "string"
  }
  limitSettings = {
    maxConcurrentTrials = int
    maxTrials = int
    timeout = "string"
  }
  primaryMetric = "string"
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }

För TextClassificationMultilabelanvänder du:

  taskType = "TextClassificationMultilabel"
  featurizationSettings = {
    datasetLanguage = "string"
  }
  limitSettings = {
    maxConcurrentTrials = int
    maxTrials = int
    timeout = "string"
  }
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }

För TextNERanvänder du:

  taskType = "TextNER"
  featurizationSettings = {
    datasetLanguage = "string"
  }
  limitSettings = {
    maxConcurrentTrials = int
    maxTrials = int
    timeout = "string"
  }
  validationData = {
    description = "string"
    jobInputType = "string"
    mode = "string"
    uri = "string"
  }

NCrossValidations-objekt

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  mode = "Auto"

För anpassadanvänder du:

  mode = "Custom"
  value = int

ForecastHorizon-objekt

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  mode = "Auto"

För anpassadanvänder du:

  mode = "Custom"
  value = int

Säsongsvariationer

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  mode = "Auto"

För anpassadanvänder du:

  mode = "Custom"
  value = int

TargetLags-objekt

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  mode = "Auto"

För anpassadanvänder du:

  mode = "Custom"
  values = [
    int
  ]

TargetRollingWindowSize-objekt

Ange egenskapen läge för att ange typ av objekt.

För Autoanvänder du:

  mode = "Auto"

För anpassadanvänder du:

  mode = "Custom"
  value = int

EarlyTerminationPolicy-objekt

Ange egenskapen policyType för att ange typ av objekt.

För Banditanvänder du:

  policyType = "Bandit"
  slackAmount = int
  slackFactor = int

För MedianStoppinganvänder du:

  policyType = "MedianStopping"

För TruncationSelectionanvänder du:

  policyType = "TruncationSelection"
  truncationPercentage = int

DistributionKonfigurationsobjekt

Ange egenskapen distributionType för att ange typ av objekt.

För Mpianvänder du:

  distributionType = "Mpi"
  processCountPerInstance = int

För PyTorchanvänder du:

  distributionType = "PyTorch"
  processCountPerInstance = int

För TensorFlowanvänder du:

  distributionType = "TensorFlow"
  parameterServerCount = int
  workerCount = int

JobInput-objekt

Ange egenskapen jobInputType för att ange typ av objekt.

För custom_modelanvänder du:

  jobInputType = "custom_model"
  mode = "string"
  uri = "string"

För literalanvänder du:

  jobInputType = "literal"
  value = "string"

För mlflow_modelanvänder du:

  jobInputType = "mlflow_model"
  mode = "string"
  uri = "string"

För mltableanvänder du:

  jobInputType = "mltable"
  mode = "string"
  uri = "string"

För triton_modelanvänder du:

  jobInputType = "triton_model"
  mode = "string"
  uri = "string"

För uri_fileanvänder du:

  jobInputType = "uri_file"
  mode = "string"
  uri = "string"

För uri_folderanvänder du:

  jobInputType = "uri_folder"
  mode = "string"
  uri = "string"

SamplingAlgorithm-objekt

Ange egenskapen samplingAlgorithmType för att ange typ av objekt.

För Bayesianskaanvänder du:

  samplingAlgorithmType = "Bayesian"

För Gridanvänder du:

  samplingAlgorithmType = "Grid"

För Randomanvänder du:

  samplingAlgorithmType = "Random"
  rule = "string"
  seed = int

MonitorComputeConfigurationBase-objekt

Ange egenskapen computeType för att ange typ av objekt.

För ServerlessSparkanvänder du:

  computeType = "ServerlessSpark"
  computeIdentity = {
    computeIdentityType = "string"
    // For remaining properties, see MonitorComputeIdentityBase objects
  }
  instanceType = "string"
  runtimeVersion = "string"

ÖvervakaComputeIdentityBase-objekt

Ange egenskapen computeIdentityType för att ange typ av objekt.

För AmlTokenanvänder du:

  computeIdentityType = "AmlToken"

För ManagedIdentityanvänder du:

  computeIdentityType = "ManagedIdentity"
  identity {
    type = "string"
    identity_ids = []
  }

MonitoringSignalBase-objekt

Ange egenskapen signalType för att ange typ av objekt.

För anpassadanvänder du:

  signalType = "Custom"
  componentId = "string"
  inputAssets = {
    {customized property} = {
      columns = {
        {customized property} = "string"
      }
      dataContext = "string"
      jobInputType = "string"
      uri = "string"
      inputDataType = "string"
      // For remaining properties, see MonitoringInputDataBase objects
    }
  }
  inputs = {
    {customized property} = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
  }
  metricThresholds = [
    {
      metric = "string"
      threshold = {
        value = int
      }
    }
  ]

För DataDriftanvänder du:

  signalType = "DataDrift"
  featureDataTypeOverride = {
    {customized property} = "string"
  }
  featureImportanceSettings = {
    mode = "string"
    targetColumn = "string"
  }
  features = {
    filterType = "string"
    // For remaining properties, see MonitoringFeatureFilterBase objects
  }
  metricThresholds = [
    {
      threshold = {
        value = int
      }
      dataType = "string"
      // For remaining properties, see DataDriftMetricThresholdBase objects
    }
  ]
  productionData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }
  referenceData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }

För DataQualityanvänder du:

  signalType = "DataQuality"
  featureDataTypeOverride = {
    {customized property} = "string"
  }
  featureImportanceSettings = {
    mode = "string"
    targetColumn = "string"
  }
  features = {
    filterType = "string"
    // For remaining properties, see MonitoringFeatureFilterBase objects
  }
  metricThresholds = [
    {
      threshold = {
        value = int
      }
      dataType = "string"
      // For remaining properties, see DataQualityMetricThresholdBase objects
    }
  ]
  productionData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }
  referenceData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }

För FeatureAttributionDriftanvänder du:

  signalType = "FeatureAttributionDrift"
  featureDataTypeOverride = {
    {customized property} = "string"
  }
  featureImportanceSettings = {
    mode = "string"
    targetColumn = "string"
  }
  metricThreshold = {
    metric = "NormalizedDiscountedCumulativeGain"
    threshold = {
      value = int
    }
  }
  productionData = [
    {
      columns = {
        {customized property} = "string"
      }
      dataContext = "string"
      jobInputType = "string"
      uri = "string"
      inputDataType = "string"
      // For remaining properties, see MonitoringInputDataBase objects
    }
  ]
  referenceData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }

För PredictionDriftanvänder du:

  signalType = "PredictionDrift"
  featureDataTypeOverride = {
    {customized property} = "string"
  }
  metricThresholds = [
    {
      threshold = {
        value = int
      }
      dataType = "string"
      // For remaining properties, see PredictionDriftMetricThresholdBase objects
    }
  ]
  productionData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }
  referenceData = {
    columns = {
      {customized property} = "string"
    }
    dataContext = "string"
    jobInputType = "string"
    uri = "string"
    inputDataType = "string"
    // For remaining properties, see MonitoringInputDataBase objects
  }

MonitoringInputDataBase-objekt

Ange egenskapen inputDataType för att ange typ av objekt.

För fastanvänder du:

  inputDataType = "Fixed"

För rullandeanvänder du:

  inputDataType = "Rolling"
  preprocessingComponentId = "string"
  windowOffset = "string"
  windowSize = "string"

För Staticanvänder du:

  inputDataType = "Static"
  preprocessingComponentId = "string"
  windowEnd = "string"
  windowStart = "string"

ÖvervakningFeatureFilterBase-objekt

Ange egenskapen filterType för att ange typ av objekt.

För AllFeaturesanvänder du:

  filterType = "AllFeatures"

För FeatureSubsetanvänder du:

  filterType = "FeatureSubset"
  features = [
    "string"
  ]

För TopNByAttributionanvänder du:

  filterType = "TopNByAttribution"
  top = int

DataDriftMetricThresholdBase-objekt

Ange egenskapen dataType för att ange typ av objekt.

För kategoriskaanvänder du:

  dataType = "Categorical"
  metric = "string"

För numeriskaanvänder du:

  dataType = "Numerical"
  metric = "string"

DataQualityMetricThresholdBase-objekt

Ange egenskapen dataType för att ange typ av objekt.

För kategoriskaanvänder du:

  dataType = "Categorical"
  metric = "string"

För numeriskaanvänder du:

  dataType = "Numerical"
  metric = "string"

PredictionDriftMetricThresholdBase-objekt

Ange egenskapen dataType för att ange typ av objekt.

För kategoriskaanvänder du:

  dataType = "Categorical"
  metric = "string"

För numeriskaanvänder du:

  dataType = "Numerical"
  metric = "string"

TriggerBase-objekt

Ange egenskapen triggerType för att ange typ av objekt.

För Cronanvänder du:

  triggerType = "Cron"
  expression = "string"

Använd för återkommande:

  triggerType = "Recurrence"
  frequency = "string"
  interval = int
  schedule = {
    hours = [
      int
    ]
    minutes = [
      int
    ]
    monthDays = [
      int
    ]
    weekDays = [
      "string"
    ]
  }

Egenskapsvärden

arbetsytor/scheman

Namn Beskrivning Värde
typ Resurstypen "Microsoft.MachineLearningServices/workspaces/schedules@2023-10-01"
Namn Resursnamnet sträng (krävs)
parent_id ID för resursen som är överordnad för den här resursen. ID för resurs av typen: arbetsytor
Egenskaper [Krävs] Ytterligare attribut för entiteten. ScheduleProperties (krävs)

ScheduleProperties

Namn Beskrivning Värde
handling [Krävs] Anger åtgärden i schemat ScheduleActionBase (krävs)
beskrivning Texten för tillgångsbeskrivningen. sträng
displayName Visningsnamn för schemat. sträng
isEnabled Är schemat aktiverat? Bool
Egenskaper Ordlistan för tillgångsegenskap. ResourceBaseProperties
Taggar Taggordlista. Taggar kan läggas till, tas bort och uppdateras. objekt
utlösa [Krävs] Anger utlösarinformationen TriggerBase (krävs)

ScheduleActionBase

Namn Beskrivning Värde
actionType Ange objekttyp CreateJob
CreateMonitor
InvokeBatchEndpoint (krävs)

JobScheduleAction

Namn Beskrivning Värde
actionType [Krävs] Anger åtgärdstypen för schemat "CreateJob" (krävs)
jobDefinition [Krävs] Definierar information om schemalägg åtgärdsdefinition. JobBaseProperties (krävs)

JobBaseProperties

Namn Beskrivning Värde
componentId ARM-resurs-ID för komponentresursen. sträng
computeId ARM-resurs-ID för beräkningsresursen. sträng
beskrivning Texten för tillgångsbeskrivningen. sträng
displayName Visningsnamn för jobbet. sträng
experimentName Namnet på experimentet som jobbet tillhör. Om det inte anges placeras jobbet i experimentet "Standard". sträng
identitet Identitetskonfiguration. Om det anges bör detta vara en av AmlToken, ManagedIdentity, UserIdentity eller null.
Standardvärdet är AmlToken om null.
IdentityConfiguration
isArchived Arkiveras tillgången? Bool
Egenskaper Ordlistan för tillgångsegenskap. ResourceBaseProperties
tjänster Lista över JobEndpoints.
För lokala jobb har en jobbslutpunkt ett slutpunktsvärde för FileStreamObject.
JobBaseServices
Taggar Taggordlista. Taggar kan läggas till, tas bort och uppdateras. objekt
jobType Ange objekttyp AutoML-
kommando
Pipeline
Svep (krävs)

IdentityConfiguration

Namn Beskrivning Värde
identityType Ange objekttyp AMLToken
Hanterad
UserIdentity (krävs)

AmlToken

Namn Beskrivning Värde
identityType [Krävs] Anger typen av identitetsramverk. "AMLToken" (krävs)

Hanterad identitet

Namn Beskrivning Värde
identityType [Krävs] Anger typen av identitetsramverk. "Hanterad" (krävs)
clientId Anger en användartilldelad identitet efter klient-ID. Ange inte det här fältet för systemtilldelade. sträng

Begränsningar:
Min längd = 36
Maximal längd = 36
Mönster = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
objectId Anger en användartilldelad identitet efter objekt-ID. Ange inte det här fältet för systemtilldelade. sträng

Begränsningar:
Min längd = 36
Maximal längd = 36
Mönster = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
resourceId Anger en användartilldelad identitet efter ARM-resurs-ID. Ange inte det här fältet för systemtilldelade. sträng

UserIdentity

Namn Beskrivning Värde
identityType [Krävs] Anger typen av identitetsramverk. "UserIdentity" (krävs)

ResourceBaseProperties

Namn Beskrivning Värde
{anpassad egenskap} sträng

JobBaseServices

Namn Beskrivning Värde
{anpassad egenskap} JobService

JobService

Namn Beskrivning Värde
Slutpunkt Url för slutpunkt. sträng
jobServiceType Slutpunktstyp. sträng
Noder Noder som användaren vill starta tjänsten på.
Om Noder inte har angetts eller angetts till null startas tjänsten endast på leader-noden.
noder
hamn Port för slutpunkt. Int
Egenskaper Ytterligare egenskaper som ska anges på slutpunkten. JobServiceProperties

Noder

Namn Beskrivning Värde
nodesValueType Ange objekttyp Alla (krävs)

Allanoder

Namn Beskrivning Värde
nodesValueType [Krävs] Typ av nodvärde "Alla" (krävs)

JobServiceEgenskaper

Namn Beskrivning Värde
{anpassad egenskap} sträng

AutoMLJob

Namn Beskrivning Värde
jobType [Krävs] Anger typen av jobb. "AutoML" (krävs)
environmentId ARM-resurs-ID för miljöspecifikationen för jobbet.
Det här är ett valfritt värde för att ange, om det inte anges, att AutoML standardinställningen är produktionsversion av autoML-kurerad miljö när jobbet körs.
sträng
environmentVariables Miljövariabler som ingår i jobbet. AutoMLJobEnvironmentVariables
Utgångar Mappning av utdatabindningar som används i jobbet. AutoMLJobOutputs
queueSettings Köinställningar för jobbet QueueSettings
Resurser Beräkningsresurskonfiguration för jobbet. JobResourceConfiguration
taskDetails [Krävs] Detta representerar scenario som kan vara en av tabeller/NLP/image AutoMLVertical (krävs)

AutoMLJobEnvironmentVariables

Namn Beskrivning Värde
{anpassad egenskap} sträng

AutoMLJobOutputs

Namn Beskrivning Värde
{anpassad egenskap} JobOutput

JobOutput

Namn Beskrivning Värde
beskrivning Beskrivning av utdata. sträng
jobOutputType Ange objekttyp custom_model
mlflow_model
mltable
triton_model
uri_file
uri_folder (krävs)

CustomModelJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "custom_model" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

MLFlowModelJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "mlflow_model" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

MLTableJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "mltable" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

TritonModelJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "triton_model" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

UriFileJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "uri_file" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

UriFolderJobOutput

Namn Beskrivning Värde
jobOutputType [Krävs] Anger typen av jobb. "uri_folder" (krävs)
läge Leveransläge för utdatatillgång. "ReadWriteMount"
"Ladda upp"
Uri Utdatatillgångs-URI. sträng

Köinställningar

Namn Beskrivning Värde
jobTier Styr beräkningsjobbnivån "Grundläggande"
"Null"
"Premium"
"Spot"
"Standard"

JobResourceConfiguration

Namn Beskrivning Värde
dockerArgs Extra argument att skicka till Docker-körningskommandot. Detta skulle åsidosätta alla parametrar som redan har angetts av systemet, eller i det här avsnittet. Den här parametern stöds endast för Azure ML-beräkningstyper. sträng
instanceCount Valfritt antal instanser eller noder som används av beräkningsmålet. Int
instanceType Valfri typ av virtuell dator som stöds av beräkningsmålet. sträng
Egenskaper Ytterligare egenskapsväska. ResourceConfigurationProperties
shmSize Storleken på docker-containerns delade minnesblock. Detta bör vara i formatet (number)(unit) där talet ska vara större än 0 och enheten kan vara en av b(byte), k(kilobyte), m(megabyte) eller g(gigabyte). sträng

Begränsningar:
Mönster = \d+[bBkKmMgG]

ResourceConfigurationProperties

Namn Beskrivning Värde
{anpassad egenskap}

AutoMLVertical

Namn Beskrivning Värde
logVerbosity Logga verbositet för jobbet. "Kritisk"
"Felsöka"
"Fel"
"Info"
"NotSet"
"Varning"
targetColumnName Målkolumnnamn: Det här är kolumnen förutsägelsevärden.
Kallas även etikettkolumnnamn i kontexten för klassificeringsuppgifter.
sträng
trainingData [Krävs] Träningsdataindata. MLTableJobInput (krävs)
taskType Ange objekttyp Klassificering
Prognostisering
ImageClassification
ImageClassificationMultilabel
ImageInstanceSegmentation
ImageObjectDetection
Regression
TextKlassificering
TextClassificationMultilabel
TextNER (krävs)

MLTableJobInput

Namn Beskrivning Värde
beskrivning Beskrivning av indata. sträng
jobInputType [Krävs] Anger typen av jobb. "custom_model"
"literal"
"mlflow_model"
"mltable"
"triton_model"
"uri_file"
"uri_folder" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

Klassificering

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "Klassificering" (krävs)
cvSplitColumnNames Kolumner som ska användas för CVSplit-data. string[]
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. TableVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. TableVerticalLimitSettings
nCrossValidations Antal korsvalideringsdelegeringar som ska tillämpas på träningsdatauppsättningen
när valideringsdatauppsättningen inte har angetts.
NCrossValidations
positiveLabel Positiv etikett för beräkning av binära mått. sträng
primaryMetric Primärt mått för aktiviteten. "AUCWeighted"
"Noggrannhet"
"AveragePrecisionScoreWeighted"
"NormMacroRecall"
"PrecisionScoreWeighted"
testData Testa indata. MLTableJobInput
testDataSize Den del av testdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
trainingSettings Indata för träningsfasen för ett AutoML-jobb. ClassificationTrainingSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
weightColumnName Namnet på exempelviktkolumnen. Automatiserad ML stöder en viktad kolumn som indata, vilket gör att rader i data viktas upp eller ned. sträng

TableVerticalFeaturizationSettings

Namn Beskrivning Värde
blockedTransformers Dessa transformatorer får inte användas vid funktionalisering. Strängmatris som innehåller något av:
"CatTargetEncoder"
"CountVectorizer"
"HashOneHotEncoder"
"LabelEncoder"
"NaiveBayes"
"OneHotEncoder"
"TextTargetEncoder"
"TfIdf"
"WoETargetEncoder"
"WordEmbedding"
columnNameAndTypes Ordlista med kolumnnamn och dess typ (int, float, string, datetime osv.). TableVerticalFeaturizationSettingsColumnNameAndTypes
datasetLanguage Datamängdsspråk, användbart för textdata. sträng
enableDnnFeaturization Avgör om du vill använda Dnn-baserade funktionaliserare för datafunktionalisering. Bool
läge Funktionaliseringsläge – Användaren kan behålla standardläget "Auto" och AutoML tar hand om nödvändig omvandling av data i funktionaliseringsfasen.
Om "Av" har valts görs ingen funktionalisering.
Om "Anpassad" har valts kan användaren ange ytterligare indata för att anpassa hur funktionalisering görs.
"Auto"
"Anpassad"
"Av"
transformerParams Användaren kan ange ytterligare transformatorer som ska användas tillsammans med de kolumner som den skulle tillämpas på och parametrar för transformeringskonstruktorn. TableVerticalFeaturizationSettingsTransformerParams

TableVerticalFeaturizationSettingsColumnNameAndTypes

Namn Beskrivning Värde
{anpassad egenskap} sträng

TableVerticalFeaturizationSettingsTransformerParams

Namn Beskrivning Värde
{anpassad egenskap} ColumnTransformer[]

ColumnTransformer

Namn Beskrivning Värde
Fält Fält som transformerarlogik ska tillämpas på. string[]
Parametrar Olika egenskaper som ska skickas till transformatorn.
Indata som förväntas är en ordlista med nyckel/värde-par i JSON-format.

TableVerticalLimitSettings

Namn Beskrivning Värde
enableEarlyTermination Aktivera tidig avslutning, avgör om AutoMLJob avslutas tidigt om det inte finns någon poängförbättring under de senaste 20 iterationerna. Bool
exitScore Slutpoäng för AutoML-jobbet. Int
maxConcurrentTrials Maximalt antal samtidiga iterationer. Int
maxCoresPerTrial Maximalt antal kärnor per iteration. Int
maxTrials Antal iterationer. Int
Timeout Tidsgräns för AutoML-jobb. sträng
trialTimeout Timeout för iteration. sträng

NCrossValidations

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoNCrossValidations

Namn Beskrivning Värde
läge [Krävs] Läge för att fastställa N-Korsvalidering. "Auto" (krävs)

CustomNCrossValidations

Namn Beskrivning Värde
läge [Krävs] Läge för att fastställa N-Korsvalidering. "Anpassad" (krävs)
värde [Krävs] Värde för N-Korsvalidering. int (krävs)

ClassificationTrainingSettings

Namn Beskrivning Värde
allowedTrainingAlgorithms Tillåtna modeller för klassificeringsaktivitet. Strängmatris som innehåller något av:
"BernoulliNaiveBayes"
"DecisionTree"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LightGBM"
"LinjärSVM"
"LogisticRegression"
"MultinomialNaiveBayes"
"RandomForest"
"SGD"
"SVM"
"XGBoostClassifier"
blockedTrainingAlgorithms Blockerade modeller för klassificeringsaktivitet. Strängmatris som innehåller något av:
"BernoulliNaiveBayes"
"DecisionTree"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LightGBM"
"LinjärSVM"
"LogisticRegression"
"MultinomialNaiveBayes"
"RandomForest"
"SGD"
"SVM"
"XGBoostClassifier"
enableDnnTraining Aktivera rekommendation för DNN-modeller. Bool
enableModelExplainability Flagga för att aktivera förklaring på bästa modell. Bool
enableOnnxCompatibleModels Flagga för att aktivera onnx-kompatibla modeller. Bool
enableStackEnsemble Aktivera stackensemblekörning. Bool
enableVoteEnsemble Aktivera röstningsensemblekörning. Bool
ensembleModelDownloadTimeout Under VotingEnsemble- och StackEnsemble-modellgenereringen laddas flera anpassade modeller från de tidigare underordnade körningarna ned.
Konfigurera den här parametern med ett högre värde än 300 sekunder om det behövs mer tid.
sträng
stackEnsembleSettings Inställningar för stackensembler för stackensemblekörning. StackEnsembleSettings

StackEnsembleSettings

Namn Beskrivning Värde
stackMetaLearnerKWargs Valfria parametrar som ska skickas till metainlärarens initierare.
stackMetaLearnerTrainPercentage Anger den andel av träningsuppsättningen (när du väljer tränings- och valideringstyp för träning) som ska reserveras för träning av metaläraren. Standardvärdet är 0,2. Int
stackMetaLearnerType Metainläraren är en modell som tränas på utdata från de enskilda heterogena modellerna. "ElasticNet"
"ElasticNetCV"
"LightGBMClassifier"
"LightGBMRegressor"
"Linjärregression"
"LogisticRegression"
"LogisticRegressionCV"
"Ingen"

Prognostisering

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "Prognostisering" (krävs)
cvSplitColumnNames Kolumner som ska användas för CVSplit-data. string[]
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. TableVerticalFeaturizationSettings
forecastingSettings Prognostisera aktivitetsspecifika indata. ForecastingSettings
limitSettings Körningsbegränsningar för AutoMLJob. TableVerticalLimitSettings
nCrossValidations Antal korsvalideringsdelegeringar som ska tillämpas på träningsdatauppsättningen
när valideringsdatauppsättningen inte har angetts.
NCrossValidations
primaryMetric Primärt mått för prognostiseringsaktivitet. "NormalizedMeanAbsoluteError"
"NormalizedRootMeanSquaredError"
"R2Score"
"SpearmanCorrelation"
testData Testa indata. MLTableJobInput
testDataSize Den del av testdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
trainingSettings Indata för träningsfasen för ett AutoML-jobb. ForecastingTrainingSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
weightColumnName Namnet på exempelviktkolumnen. Automatiserad ML stöder en viktad kolumn som indata, vilket gör att rader i data viktas upp eller ned. sträng

PrognostiseringInställningar

Namn Beskrivning Värde
countryOrRegionForHolidays Land eller region för helgdagar för prognostiseringsuppgifter.
Dessa bör vara ISO 3166 tvåbokstavs lands-/regionkoder, till exempel "US" eller "GB".
sträng
cvStepSize Antal perioder mellan ursprungstiden för en CV-vikning och nästa vik. För
om CVStepSize = 3 för dagliga data, kommer ursprungstiden för varje vik att vara
med tre dagars mellanrum.
Int
featureLags Flagga för att generera fördröjningar för de numeriska funktionerna med "auto" eller null. "Auto"
"Ingen"
forecastHorizon Den önskade maximala prognoshorisonten i tidsseriefrekvensenheter. ForecastHorizon
frekvens Vid prognostisering representerar den här parametern den period med vilken prognosen önskas, till exempel dagligen, varje vecka, varje år osv. Prognosfrekvensen är datamängdsfrekvens som standard. sträng
Säsongsvariationer Ange säsongsvariationer för tidsserier som en heltalsmultipel för seriefrekvensen.
Om säsongsvariationen är inställd på "auto" kommer den att härledas.
Säsongsvariationer
shortSeriesHandlingConfig Parametern som definierar hur AutoML ska hantera korta tidsserier. "Auto"
"Släpp"
"Ingen"
"Pad"
targetAggregateFunction Den funktion som ska användas för att aggregera målkolumnen för tidsserier så att den överensstämmer med en angiven användarfrekvens.
Om TargetAggregateFunction har angetts, t.ex. inte "None", men freq-parametern inte har angetts, utlöses felet. Möjliga målsammansättningsfunktioner är: "sum", "max", "min" och "mean".
"Max"
"Medelvärde"
"Min"
"Ingen"
"Summa"
targetLags Antalet tidigare perioder som ska fördröjas från målkolumnen. TargetLags
targetRollingWindowSize Antalet tidigare perioder som används för att skapa ett rullande fönstergenomsnitt för målkolumnen. TargetRollingWindowSize
timeColumnName Namnet på tidskolumnen. Den här parametern krävs vid prognostisering för att ange kolumnen datetime i indata som används för att skapa tidsserierna och härleda dess frekvens. sträng
timeSeriesIdColumnNames Namnen på kolumner som används för att gruppera en tidsserie. Den kan användas för att skapa flera serier.
Om kornigheten inte har definierats antas datauppsättningen vara en tidsserie. Den här parametern används med prognostisering av aktivitetstyp.
string[]
useStl Konfigurera STL-nedbrytning av målkolumnen för tidsserier. "Ingen"
"Säsong"
"SeasonTrend"

ForecastHorizon

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoForecastHorizon

Namn Beskrivning Värde
läge [Krävs] Ange markeringsläge för prognoshorisontvärde. "Auto" (krävs)

CustomForecastHorizon

Namn Beskrivning Värde
läge [Krävs] Ange markeringsläge för prognoshorisontvärde. "Anpassad" (krävs)
värde [Krävs] Prognoshorisontvärde. int (krävs)

Säsongsvariationer

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoSeasonality

Namn Beskrivning Värde
läge [Krävs] Säsongsläge. "Auto" (krävs)

CustomSeasonality

Namn Beskrivning Värde
läge [Krävs] Säsongsläge. "Anpassad" (krävs)
värde [Krävs] Säsongsvärde. int (krävs)

TargetLags

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoTargetLags

Namn Beskrivning Värde
läge [Krävs] Ange målfördröjningsläge – Automatiskt/anpassat "Auto" (krävs)

CustomTargetLags

Namn Beskrivning Värde
läge [Krävs] Ange målfördröjningsläge – Automatiskt/anpassat "Anpassad" (krävs)
värden [Krävs] Ange målfördröjningsvärden. int[] (krävs)

TargetRollingWindowSize

Namn Beskrivning Värde
läge Ange objekttyp automatisk
anpassad (krävs)

AutoTargetRollingWindowSize

Namn Beskrivning Värde
läge [Krävs] TargetRollingWindowSiz identifieringsläge. "Auto" (krävs)

CustomTargetRollingWindowSize

Namn Beskrivning Värde
läge [Krävs] TargetRollingWindowSiz identifieringsläge. "Anpassad" (krävs)
värde [Krävs] TargetRollingWindowSize-värde. int (krävs)

ForecastingTrainingSettings

Namn Beskrivning Värde
allowedTrainingAlgorithms Tillåtna modeller för prognostiseringsaktivitet. Strängmatris som innehåller något av:
"Arimax"
"AutoArima"
"Genomsnitt"
"DecisionTree"
"ElasticNet"
"ExponentialSmoothing"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LassoLars"
"LightGBM"
"Naive"
"Profet"
"RandomForest"
"SGD"
"SeasonalAverage"
"SeasonalNaive"
"TCNForecaster"
"XGBoostRegressor"
blockedTrainingAlgorithms Blockerade modeller för prognostiseringsaktivitet. Strängmatris som innehåller något av:
"Arimax"
"AutoArima"
"Genomsnitt"
"DecisionTree"
"ElasticNet"
"ExponentialSmoothing"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LassoLars"
"LightGBM"
"Naive"
"Profet"
"RandomForest"
"SGD"
"SeasonalAverage"
"SeasonalNaive"
"TCNForecaster"
"XGBoostRegressor"
enableDnnTraining Aktivera rekommendation för DNN-modeller. Bool
enableModelExplainability Flagga för att aktivera förklaring på bästa modell. Bool
enableOnnxCompatibleModels Flagga för att aktivera onnx-kompatibla modeller. Bool
enableStackEnsemble Aktivera stackensemblekörning. Bool
enableVoteEnsemble Aktivera röstningsensemblekörning. Bool
ensembleModelDownloadTimeout Under VotingEnsemble- och StackEnsemble-modellgenereringen laddas flera anpassade modeller från de tidigare underordnade körningarna ned.
Konfigurera den här parametern med ett högre värde än 300 sekunder om det behövs mer tid.
sträng
stackEnsembleSettings Inställningar för stackensembler för stackensemblekörning. StackEnsembleSettings

ImageClassification

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "ImageClassification" (krävs)
limitSettings [Krävs] Begränsa inställningarna för AutoML-jobbet. ImageLimitSettings (krävs)
modelSettings Inställningar som används för att träna modellen. ImageModelSettingsClassification
primaryMetric Primärt mått för att optimera för den här uppgiften. "AUCWeighted"
"Noggrannhet"
"AveragePrecisionScoreWeighted"
"NormMacroRecall"
"PrecisionScoreWeighted"
searchSpace Sök efter sampling av olika kombinationer av modeller och deras hyperparametrar. ImageModelDistributionSettingsClassification[]
sweepSettings Sopning av modeller och hyperparametrar som sveper relaterade inställningar. ImageSweepSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int

ImageLimitSettings

Namn Beskrivning Värde
maxConcurrentTrials Maximalt antal samtidiga AutoML-iterationer. Int
maxTrials Maximalt antal AutoML-iterationer. Int
Timeout Tidsgräns för AutoML-jobb. sträng

ImageModelSettingsClassification

Namn Beskrivning Värde
advancedSettings Inställningar för avancerade scenarier. sträng
amsGradient Aktivera AMSGrad när optimeraren är "adam" eller "adamw". Bool
Stödsystem Inställningar för att använda förhöjda inställningar. sträng
beta1 Värdet för "beta1" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. Int
beta2 Värdet för "beta2" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. Int
checkpointFrequency Frekvens för att lagra modellkontrollpunkter. Måste vara ett positivt heltal. Int
checkpointModel Den förtränad kontrollpunktsmodellen för inkrementell träning. MLFlowModelJobInput
checkpointRunId ID:t för en tidigare körning som har en förtränad kontrollpunkt för inkrementell träning. sträng
distribuerad Om du vill använda distribuerad träning. Bool
earlyStopping Aktivera tidig stopplogik under träning. Bool
earlyStoppingDelay Minsta antal epoker eller valideringsutvärderingar som ska vänta innan den primära måttförbättringen
spåras för tidig stoppning. Måste vara ett positivt heltal.
Int
earlyStoppingPatience Minsta antal epoker eller valideringsutvärderingar utan primär måttförbättring före
-körningen stoppas. Måste vara ett positivt heltal.
Int
enableOnnxNormalization Aktivera normalisering vid export av ONNX-modell. Bool
evaluationFrequency Frekvens för att utvärdera valideringsdatauppsättningen för att hämta måttpoäng. Måste vara ett positivt heltal. Int
gradientAccumulationStep Toningsansamling innebär att du kör ett konfigurerat antal "GradAccumulationStep"-steg utan
uppdatera modellvikterna medan du ackumulerar toningarna i dessa steg och sedan använder
de ackumulerade toningarna för att beräkna viktuppdateringarna. Måste vara ett positivt heltal.
Int
layerToFreeze Antal lager som ska frysas för modellen. Måste vara ett positivt heltal.
Att till exempel skicka 2 som värde för "seresnext" innebär
frysskikt0 och lager1. En fullständig lista över modeller som stöds och information om lagerfrysning finns i
se: /azure/machine-learning/how-to-auto-train-image-models.
Int
learningRate Inledande inlärningsfrekvens. Måste vara en flottör i intervallet [0, 1]. Int
learningRateScheduler Typ av schemaläggare för inlärningsfrekvens. Måste vara "warmup_cosine" eller "steg". "Ingen"
"Steg"
"WarmupCosine"
modelName Namnet på den modell som ska användas för träning.
Mer information om tillgängliga modeller finns i den officiella dokumentationen:
/azure/machine-learning/how-to-auto-train-image-models.
sträng
rörelsemängd Värdet för momentum när optimeraren är "sgd". Måste vara en flottör i intervallet [0, 1]. Int
nesterov Aktivera nesterov när optimeraren är "sgd". Bool
numberOfEpochs Antal träningsepoker. Måste vara ett positivt heltal. Int
numberOfWorkers Antal datainläsningsarbetare. Måste vara ett icke-negativt heltal. Int
Optimizer Typ av optimerare. "Adam"
"Adamw"
"Ingen"
"Sgd"
randomSeed Slumpmässigt frö som ska användas vid användning av deterministisk träning. Int
stepLRGamma Värdet för gamma när learning rate scheduler är "step". Måste vara en flottör i intervallet [0, 1]. Int
stepLRStepSize Värdet för stegstorlek när schemaläggaren för inlärningsfrekvens är "steg". Måste vara ett positivt heltal. Int
trainingBatchSize Träningsbatchstorlek. Måste vara ett positivt heltal. Int
trainingCropSize Bildgrödstorlek som är indata till det neurala nätverket för träningsdatauppsättningen. Måste vara ett positivt heltal. Int
validationBatchSize Valideringsbatchstorlek. Måste vara ett positivt heltal. Int
validationCropSize Bildgrödstorlek som är indata till det neurala nätverket för valideringsdatauppsättningen. Måste vara ett positivt heltal. Int
validationResizeSize Bildstorlek som du vill ändra storlek på innan du beskär för valideringsdatauppsättningen. Måste vara ett positivt heltal. Int
warmupCosineLRCycles Värdet för cosinincykeln när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara en flottör i intervallet [0, 1]. Int
warmupCosineLRWarmupEpochs Värdet för uppvärmningsepoker när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara ett positivt heltal. Int
weightDecay Värdet för viktförfall när optimeraren är "sgd", "adam" eller "adamw". Måste vara en float i intervallet[0, 1]. Int
weightedLoss Viktad förlust. De godkända värdena är 0 för ingen viktad förlust.
1 för viktad förlust med kvrt. (class_weights). 2 för viktad förlust med class_weights. Måste vara 0, 1 eller 2.
Int

MLFlowModelJobInput

Namn Beskrivning Värde
beskrivning Beskrivning av indata. sträng
jobInputType [Krävs] Anger typen av jobb. "custom_model"
"literal"
"mlflow_model"
"mltable"
"triton_model"
"uri_file"
"uri_folder" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

ImageModelDistributionSettingsClassification

Namn Beskrivning Värde
amsGradient Aktivera AMSGrad när optimeraren är "adam" eller "adamw". sträng
Stödsystem Inställningar för att använda förhöjda inställningar. sträng
beta1 Värdet för "beta1" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. sträng
beta2 Värdet för "beta2" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. sträng
distribuerad Om distributionsträning ska användas. sträng
earlyStopping Aktivera tidig stopplogik under träning. sträng
earlyStoppingDelay Minsta antal epoker eller valideringsutvärderingar som ska vänta innan den primära måttförbättringen
spåras för tidig stoppning. Måste vara ett positivt heltal.
sträng
earlyStoppingPatience Minsta antal epoker eller valideringsutvärderingar utan primär måttförbättring före
-körningen stoppas. Måste vara ett positivt heltal.
sträng
enableOnnxNormalization Aktivera normalisering vid export av ONNX-modell. sträng
evaluationFrequency Frekvens för att utvärdera valideringsdatauppsättningen för att hämta måttpoäng. Måste vara ett positivt heltal. sträng
gradientAccumulationStep Toningsansamling innebär att du kör ett konfigurerat antal "GradAccumulationStep"-steg utan
uppdatera modellvikterna medan du ackumulerar toningarna i dessa steg och sedan använder
de ackumulerade toningarna för att beräkna viktuppdateringarna. Måste vara ett positivt heltal.
sträng
layerToFreeze Antal lager som ska frysas för modellen. Måste vara ett positivt heltal.
Att till exempel skicka 2 som värde för "seresnext" innebär
frysskikt0 och lager1. En fullständig lista över modeller som stöds och information om lagerfrysning finns i
se: /azure/machine-learning/how-to-auto-train-image-models.
sträng
learningRate Inledande inlärningsfrekvens. Måste vara en flottör i intervallet [0, 1]. sträng
learningRateScheduler Typ av schemaläggare för inlärningsfrekvens. Måste vara "warmup_cosine" eller "steg". sträng
modelName Namnet på den modell som ska användas för träning.
Mer information om tillgängliga modeller finns i den officiella dokumentationen:
/azure/machine-learning/how-to-auto-train-image-models.
sträng
rörelsemängd Värdet för momentum när optimeraren är "sgd". Måste vara en flottör i intervallet [0, 1]. sträng
nesterov Aktivera nesterov när optimeraren är "sgd". sträng
numberOfEpochs Antal träningsepoker. Måste vara ett positivt heltal. sträng
numberOfWorkers Antal datainläsningsarbetare. Måste vara ett icke-negativt heltal. sträng
Optimizer Typ av optimerare. Måste vara antingen "sgd", "adam" eller "adamw". sträng
randomSeed Slumpmässigt frö som ska användas vid användning av deterministisk träning. sträng
stepLRGamma Värdet för gamma när learning rate scheduler är "step". Måste vara en flottör i intervallet [0, 1]. sträng
stepLRStepSize Värdet för stegstorlek när schemaläggaren för inlärningsfrekvens är "steg". Måste vara ett positivt heltal. sträng
trainingBatchSize Träningsbatchstorlek. Måste vara ett positivt heltal. sträng
trainingCropSize Bildgrödstorlek som är indata till det neurala nätverket för träningsdatauppsättningen. Måste vara ett positivt heltal. sträng
validationBatchSize Valideringsbatchstorlek. Måste vara ett positivt heltal. sträng
validationCropSize Bildgrödstorlek som är indata till det neurala nätverket för valideringsdatauppsättningen. Måste vara ett positivt heltal. sträng
validationResizeSize Bildstorlek som du vill ändra storlek på innan du beskär för valideringsdatauppsättningen. Måste vara ett positivt heltal. sträng
warmupCosineLRCycles Värdet för cosinincykeln när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara en flottör i intervallet [0, 1]. sträng
warmupCosineLRWarmupEpochs Värdet för uppvärmningsepoker när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara ett positivt heltal. sträng
weightDecay Värdet för viktförfall när optimeraren är "sgd", "adam" eller "adamw". Måste vara en float i intervallet[0, 1]. sträng
weightedLoss Viktad förlust. De godkända värdena är 0 för ingen viktad förlust.
1 för viktad förlust med kvrt. (class_weights). 2 för viktad förlust med class_weights. Måste vara 0, 1 eller 2.
sträng

ImageSweepSettings

Namn Beskrivning Värde
earlyTermination Typ av princip för tidig uppsägning. EarlyTerminationPolicy
samplingAlgorithm [Krävs] Typ av algoritmer för hyperparametersampling. "Bayesiansk"
"Rutnät"
"Random" (krävs)

EarlyTerminationPolicy

Namn Beskrivning Värde
delayEvaluation Antal intervall som den första utvärderingen ska fördröjas med. Int
evaluationInterval Intervall (antal körningar) mellan principutvärderingar. Int
policyType Ange objekttyp Bandit
MedianStopping
TruncationSelection (krävs)

BanditPolicy

Namn Beskrivning Värde
policyType [Krävs] Namn på principkonfiguration "Bandit" (krävs)
slackAmount Absolut avstånd som tillåts från den bästa körningen. Int
slackFactor Förhållandet mellan det tillåtna avståndet från den bäst presterande körningen. Int

MedianStoppingPolicy

Namn Beskrivning Värde
policyType [Krävs] Namn på principkonfiguration "MedianStopping" (krävs)

TruncationSelectionPolicy

Namn Beskrivning Värde
policyType [Krävs] Namn på principkonfiguration "TruncationSelection" (krävs)
truncationPercentage Procentandelen körningar som ska avbrytas vid varje utvärderingsintervall. Int

ImageClassificationMultilabel

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "ImageClassificationMultilabel" (krävs)
limitSettings [Krävs] Begränsa inställningarna för AutoML-jobbet. ImageLimitSettings (krävs)
modelSettings Inställningar som används för att träna modellen. ImageModelSettingsClassification
primaryMetric Primärt mått för att optimera för den här uppgiften. "AUCWeighted"
"Noggrannhet"
"AveragePrecisionScoreWeighted"
"IOU"
"NormMacroRecall"
"PrecisionScoreWeighted"
searchSpace Sök efter sampling av olika kombinationer av modeller och deras hyperparametrar. ImageModelDistributionSettingsClassification[]
sweepSettings Sopning av modeller och hyperparametrar som sveper relaterade inställningar. ImageSweepSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int

ImageInstanceSegmentation

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "ImageInstanceSegmentation" (krävs)
limitSettings [Krävs] Begränsa inställningarna för AutoML-jobbet. ImageLimitSettings (krävs)
modelSettings Inställningar som används för att träna modellen. ImageModelSettingsObjectDetection
primaryMetric Primärt mått för att optimera för den här uppgiften. "MeanAveragePrecision"
searchSpace Sök efter sampling av olika kombinationer av modeller och deras hyperparametrar. ImageModelDistributionSettingsObjectDetection[]
sweepSettings Sopning av modeller och hyperparametrar som sveper relaterade inställningar. ImageSweepSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int

ImageModelSettingsObjectDetection

Namn Beskrivning Värde
advancedSettings Inställningar för avancerade scenarier. sträng
amsGradient Aktivera AMSGrad när optimeraren är "adam" eller "adamw". Bool
Stödsystem Inställningar för att använda förhöjda inställningar. sträng
beta1 Värdet för "beta1" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. Int
beta2 Värdet för "beta2" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. Int
boxDetectionsPerImage Maximalt antal identifieringar per bild för alla klasser. Måste vara ett positivt heltal.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
boxScoreThreshold Under slutsatsdragningen returnerar du endast förslag med en klassificeringspoäng som är större än
BoxScoreThreshold. Måste vara en float i intervallet[0, 1].
Int
checkpointFrequency Frekvens för att lagra modellkontrollpunkter. Måste vara ett positivt heltal. Int
checkpointModel Den förtränad kontrollpunktsmodellen för inkrementell träning. MLFlowModelJobInput
checkpointRunId ID:t för en tidigare körning som har en förtränad kontrollpunkt för inkrementell träning. sträng
distribuerad Om du vill använda distribuerad träning. Bool
earlyStopping Aktivera tidig stopplogik under träning. Bool
earlyStoppingDelay Minsta antal epoker eller valideringsutvärderingar som ska vänta innan den primära måttförbättringen
spåras för tidig stoppning. Måste vara ett positivt heltal.
Int
earlyStoppingPatience Minsta antal epoker eller valideringsutvärderingar utan primär måttförbättring före
-körningen stoppas. Måste vara ett positivt heltal.
Int
enableOnnxNormalization Aktivera normalisering vid export av ONNX-modell. Bool
evaluationFrequency Frekvens för att utvärdera valideringsdatauppsättningen för att hämta måttpoäng. Måste vara ett positivt heltal. Int
gradientAccumulationStep Toningsansamling innebär att du kör ett konfigurerat antal "GradAccumulationStep"-steg utan
uppdatera modellvikterna medan du ackumulerar toningarna i dessa steg och sedan använder
de ackumulerade toningarna för att beräkna viktuppdateringarna. Måste vara ett positivt heltal.
Int
imageSize Bildstorlek för träning och validering. Måste vara ett positivt heltal.
Obs! Träningskörningen kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
Int
layerToFreeze Antal lager som ska frysas för modellen. Måste vara ett positivt heltal.
Att till exempel skicka 2 som värde för "seresnext" innebär
frysskikt0 och lager1. En fullständig lista över modeller som stöds och information om lagerfrysning finns i
se: /azure/machine-learning/how-to-auto-train-image-models.
Int
learningRate Inledande inlärningsfrekvens. Måste vara en flottör i intervallet [0, 1]. Int
learningRateScheduler Typ av schemaläggare för inlärningsfrekvens. Måste vara "warmup_cosine" eller "steg". "Ingen"
"Steg"
"WarmupCosine"
maxSize Maximal storlek på bilden som ska skalas om innan den matas till stamnätet.
Måste vara ett positivt heltal. Obs! Träningskörning kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
minSize Minsta storlek på bilden som ska skalas om innan den matas till stamnätet.
Måste vara ett positivt heltal. Obs! Träningskörning kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
modelName Namnet på den modell som ska användas för träning.
Mer information om tillgängliga modeller finns i den officiella dokumentationen:
/azure/machine-learning/how-to-auto-train-image-models.
sträng
modelSize Modellstorlek. Måste vara "liten", "medium", "stor" eller "xlarge".
Obs! Träningskörning kan komma in i CUDA OOM om modellstorleken är för stor.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
"ExtraLarge"
"Stor"
"Medel"
"Ingen"
"Liten"
rörelsemängd Värdet för momentum när optimeraren är "sgd". Måste vara en flottör i intervallet [0, 1]. Int
multiSkala Aktivera flera skalningsbilder genom att variera bildstorleken med +/- 50%.
Obs! Träningskörning kan komma in i CUDA OOM om det inte finns tillräckligt med GPU-minne.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
Bool
nesterov Aktivera nesterov när optimeraren är "sgd". Bool
nmsIouThreshold IOU-tröskelvärde som används vid slutsatsdragning i NMS efter bearbetning. Måste vara en flottör i intervallet [0, 1]. Int
numberOfEpochs Antal träningsepoker. Måste vara ett positivt heltal. Int
numberOfWorkers Antal datainläsningsarbetare. Måste vara ett icke-negativt heltal. Int
Optimizer Typ av optimerare. "Adam"
"Adamw"
"Ingen"
"Sgd"
randomSeed Slumpmässigt frö som ska användas vid användning av deterministisk träning. Int
stepLRGamma Värdet för gamma när learning rate scheduler är "step". Måste vara en flottör i intervallet [0, 1]. Int
stepLRStepSize Värdet för stegstorlek när schemaläggaren för inlärningsfrekvens är "steg". Måste vara ett positivt heltal. Int
tileGridSize Rutnätsstorleken som ska användas för att sida vid sida vid varje bild. Obs! TileGridSize får inte vara
Ingen för att aktivera logik för identifiering av små objekt. En sträng som innehåller två heltal i mxn-format.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
tileOverlapRatio Överlappningsförhållande mellan intilliggande paneler i varje dimension. Måste vara flytande i intervallet [0, 1).
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
tilePredictionsNmsThreshold Tröskelvärdet för IOU som ska användas för att utföra NMS vid sammanslagning av förutsägelser från paneler och bilder.
Används i validering/slutsatsdragning. Måste vara flytande i intervallet [0, 1].
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
Int
trainingBatchSize Träningsbatchstorlek. Måste vara ett positivt heltal. Int
validationBatchSize Valideringsbatchstorlek. Måste vara ett positivt heltal. Int
validationIouThreshold Tröskelvärde för IOU som ska användas vid beräkning av valideringsmått. Måste vara flytande i intervallet [0, 1]. Int
validationMetricType Beräkningsmetod för mått som ska användas för valideringsmått. "Coco"
"CocoVoc"
"Ingen"
"Voc"
warmupCosineLRCycles Värdet för cosinincykeln när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara en flottör i intervallet [0, 1]. Int
warmupCosineLRWarmupEpochs Värdet för uppvärmningsepoker när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara ett positivt heltal. Int
weightDecay Värdet för viktförfall när optimeraren är "sgd", "adam" eller "adamw". Måste vara en float i intervallet[0, 1]. Int

ImageModelDistributionSettingsObjectDetection

Namn Beskrivning Värde
amsGradient Aktivera AMSGrad när optimeraren är "adam" eller "adamw". sträng
Stödsystem Inställningar för att använda förhöjda inställningar. sträng
beta1 Värdet för "beta1" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. sträng
beta2 Värdet för "beta2" när optimizern är "adam" eller "adamw". Måste vara en flottör i intervallet [0, 1]. sträng
boxDetectionsPerImage Maximalt antal identifieringar per bild för alla klasser. Måste vara ett positivt heltal.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
boxScoreThreshold Under slutsatsdragningen returnerar du endast förslag med en klassificeringspoäng som är större än
BoxScoreThreshold. Måste vara en float i intervallet[0, 1].
sträng
distribuerad Om distributionsträning ska användas. sträng
earlyStopping Aktivera tidig stopplogik under träning. sträng
earlyStoppingDelay Minsta antal epoker eller valideringsutvärderingar som ska vänta innan den primära måttförbättringen
spåras för tidig stoppning. Måste vara ett positivt heltal.
sträng
earlyStoppingPatience Minsta antal epoker eller valideringsutvärderingar utan primär måttförbättring före
-körningen stoppas. Måste vara ett positivt heltal.
sträng
enableOnnxNormalization Aktivera normalisering vid export av ONNX-modell. sträng
evaluationFrequency Frekvens för att utvärdera valideringsdatauppsättningen för att hämta måttpoäng. Måste vara ett positivt heltal. sträng
gradientAccumulationStep Toningsansamling innebär att du kör ett konfigurerat antal "GradAccumulationStep"-steg utan
uppdatera modellvikterna medan du ackumulerar toningarna i dessa steg och sedan använder
de ackumulerade toningarna för att beräkna viktuppdateringarna. Måste vara ett positivt heltal.
sträng
imageSize Bildstorlek för träning och validering. Måste vara ett positivt heltal.
Obs! Träningskörningen kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
sträng
layerToFreeze Antal lager som ska frysas för modellen. Måste vara ett positivt heltal.
Att till exempel skicka 2 som värde för "seresnext" innebär
frysskikt0 och lager1. En fullständig lista över modeller som stöds och information om lagerfrysning finns i
se: /azure/machine-learning/how-to-auto-train-image-models.
sträng
learningRate Inledande inlärningsfrekvens. Måste vara en flottör i intervallet [0, 1]. sträng
learningRateScheduler Typ av schemaläggare för inlärningsfrekvens. Måste vara "warmup_cosine" eller "steg". sträng
maxSize Maximal storlek på bilden som ska skalas om innan den matas till stamnätet.
Måste vara ett positivt heltal. Obs! Träningskörning kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
minSize Minsta storlek på bilden som ska skalas om innan den matas till stamnätet.
Måste vara ett positivt heltal. Obs! Träningskörning kan komma in i CUDA OOM om storleken är för stor.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
modelName Namnet på den modell som ska användas för träning.
Mer information om tillgängliga modeller finns i den officiella dokumentationen:
/azure/machine-learning/how-to-auto-train-image-models.
sträng
modelSize Modellstorlek. Måste vara "liten", "medium", "stor" eller "xlarge".
Obs! Träningskörning kan komma in i CUDA OOM om modellstorleken är för stor.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
sträng
rörelsemängd Värdet för momentum när optimeraren är "sgd". Måste vara en flottör i intervallet [0, 1]. sträng
multiSkala Aktivera flera skalningsbilder genom att variera bildstorleken med +/- 50%.
Obs! Träningskörning kan komma in i CUDA OOM om det inte finns tillräckligt med GPU-minne.
Obs! De här inställningarna stöds endast för yolov5-algoritmen.
sträng
nesterov Aktivera nesterov när optimeraren är "sgd". sträng
nmsIouThreshold IOU-tröskelvärde som används vid slutsatsdragning i NMS efter bearbetning. Måste vara flytande i intervallet [0, 1]. sträng
numberOfEpochs Antal träningsepoker. Måste vara ett positivt heltal. sträng
numberOfWorkers Antal datainläsningsarbetare. Måste vara ett icke-negativt heltal. sträng
Optimizer Typ av optimerare. Måste vara antingen "sgd", "adam" eller "adamw". sträng
randomSeed Slumpmässigt frö som ska användas vid användning av deterministisk träning. sträng
stepLRGamma Värdet för gamma när learning rate scheduler är "step". Måste vara en flottör i intervallet [0, 1]. sträng
stepLRStepSize Värdet för stegstorlek när schemaläggaren för inlärningsfrekvens är "steg". Måste vara ett positivt heltal. sträng
tileGridSize Rutnätsstorleken som ska användas för att sida vid sida vid varje bild. Obs! TileGridSize får inte vara
Ingen för att aktivera logik för identifiering av små objekt. En sträng som innehåller två heltal i mxn-format.
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
tileOverlapRatio Överlappningsförhållande mellan intilliggande paneler i varje dimension. Måste vara flytande i intervallet [0, 1).
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
sträng
tilePredictionsNmsThreshold Tröskelvärdet för IOU som ska användas för att utföra NMS vid sammanslagning av förutsägelser från paneler och bilder.
Används i validering/slutsatsdragning. Måste vara flytande i intervallet [0, 1].
Obs! De här inställningarna stöds inte för yolov5-algoritmen.
NMS: Icke-maximal undertryckning
sträng
trainingBatchSize Träningsbatchstorlek. Måste vara ett positivt heltal. sträng
validationBatchSize Valideringsbatchstorlek. Måste vara ett positivt heltal. sträng
validationIouThreshold Tröskelvärde för IOU som ska användas vid beräkning av valideringsmått. Måste vara flytande i intervallet [0, 1]. sträng
validationMetricType Beräkningsmetod för mått som ska användas för valideringsmått. Måste vara "none", "coco", "voc" eller "coco_voc". sträng
warmupCosineLRCycles Värdet för cosinincykeln när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara en flottör i intervallet [0, 1]. sträng
warmupCosineLRWarmupEpochs Värdet för uppvärmningsepoker när schemaläggaren för inlärningsfrekvens är "warmup_cosine". Måste vara ett positivt heltal. sträng
weightDecay Värdet för viktförfall när optimeraren är "sgd", "adam" eller "adamw". Måste vara en float i intervallet[0, 1]. sträng

ImageObjectDetection

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "ImageObjectDetection" (krävs)
limitSettings [Krävs] Begränsa inställningarna för AutoML-jobbet. ImageLimitSettings (krävs)
modelSettings Inställningar som används för att träna modellen. ImageModelSettingsObjectDetection
primaryMetric Primärt mått för att optimera för den här uppgiften. "MeanAveragePrecision"
searchSpace Sök efter sampling av olika kombinationer av modeller och deras hyperparametrar. ImageModelDistributionSettingsObjectDetection[]
sweepSettings Sopning av modeller och hyperparametrar som sveper relaterade inställningar. ImageSweepSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int

Regression

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "Regression" (krävs)
cvSplitColumnNames Kolumner som ska användas för CVSplit-data. string[]
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. TableVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. TableVerticalLimitSettings
nCrossValidations Antal korsvalideringsdelegeringar som ska tillämpas på träningsdatauppsättningen
när valideringsdatauppsättningen inte har angetts.
NCrossValidations
primaryMetric Primärt mått för regressionsaktivitet. "NormalizedMeanAbsoluteError"
"NormalizedRootMeanSquaredError"
"R2Score"
"SpearmanCorrelation"
testData Testa indata. MLTableJobInput
testDataSize Den del av testdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
trainingSettings Indata för träningsfasen för ett AutoML-jobb. RegressionTrainingSettings
validationData Indata för valideringsdata. MLTableJobInput
validationDataSize Den del av träningsdatauppsättningen som måste reserveras för valideringsändamål.
Värden mellan (0,0 , 1,0)
Används när valideringsdatauppsättningen inte tillhandahålls.
Int
weightColumnName Namnet på exempelviktkolumnen. Automatiserad ML stöder en viktad kolumn som indata, vilket gör att rader i data viktas upp eller ned. sträng

RegressionTrainingSettings

Namn Beskrivning Värde
allowedTrainingAlgorithms Tillåtna modeller för regressionsaktivitet. Strängmatris som innehåller något av:
"DecisionTree"
"ElasticNet"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LassoLars"
"LightGBM"
"RandomForest"
"SGD"
"XGBoostRegressor"
blockedTrainingAlgorithms Blockerade modeller för regressionsuppgift. Strängmatris som innehåller något av:
"DecisionTree"
"ElasticNet"
"ExtremeRandomTrees"
"GradientBoosting"
"KNN"
"LassoLars"
"LightGBM"
"RandomForest"
"SGD"
"XGBoostRegressor"
enableDnnTraining Aktivera rekommendation för DNN-modeller. Bool
enableModelExplainability Flagga för att aktivera förklaring på bästa modell. Bool
enableOnnxCompatibleModels Flagga för att aktivera onnx-kompatibla modeller. Bool
enableStackEnsemble Aktivera stackensemblekörning. Bool
enableVoteEnsemble Aktivera röstningsensemblekörning. Bool
ensembleModelDownloadTimeout Under VotingEnsemble- och StackEnsemble-modellgenereringen laddas flera anpassade modeller från de tidigare underordnade körningarna ned.
Konfigurera den här parametern med ett högre värde än 300 sekunder om det behövs mer tid.
sträng
stackEnsembleSettings Inställningar för stackensembler för stackensemblekörning. StackEnsembleSettings

Textklassificering

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "TextKlassificering" (krävs)
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. NlpVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. NlpVerticalLimitSettings
primaryMetric Primärt mått för Text-Classification uppgift. "AUCWeighted"
"Noggrannhet"
"AveragePrecisionScoreWeighted"
"NormMacroRecall"
"PrecisionScoreWeighted"
validationData Indata för valideringsdata. MLTableJobInput

NlpVerticalFeaturizationSettings

Namn Beskrivning Värde
datasetLanguage Datamängdsspråk, användbart för textdata. sträng

NlpVerticalLimitSettings

Namn Beskrivning Värde
maxConcurrentTrials Maximalt antal samtidiga AutoML-iterationer. Int
maxTrials Antal AutoML-iterationer. Int
Timeout Tidsgräns för AutoML-jobb. sträng

TextClassificationMultilabel

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "TextClassificationMultilabel" (krävs)
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. NlpVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. NlpVerticalLimitSettings
validationData Indata för valideringsdata. MLTableJobInput

Textner

Namn Beskrivning Värde
taskType [Krävs] Aktivitetstyp för AutoMLJob. "TextNER" (krävs)
featurizationSettings Funktionaliseringsindata som behövs för AutoML-jobb. NlpVerticalFeaturizationSettings
limitSettings Körningsbegränsningar för AutoMLJob. NlpVerticalLimitSettings
validationData Indata för valideringsdata. MLTableJobInput

Kommandojobb

Namn Beskrivning Värde
jobType [Krävs] Anger typen av jobb. "Kommando" (krävs)
codeId ARM-resurs-ID för kodtillgången. sträng
befallning [Krävs] Kommandot som ska köras vid start av jobbet. T.ex. "python train.py" sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
fördelning Distributionskonfiguration för jobbet. Om detta anges ska det vara en av Mpi, Tensorflow, PyTorch eller null. DistributionKonfiguration
environmentId [Krävs] ARM-resurs-ID för miljöspecifikationen för jobbet. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
environmentVariables Miljövariabler som ingår i jobbet. CommandJobEnvironmentVariables
Ingångar Mappning av indatabindningar som används i jobbet. CommandJobInputs
Gränser Gräns för kommandojobb. CommandJobLimits
Utgångar Mappning av utdatabindningar som används i jobbet. CommandJobOutputs
queueSettings Köinställningar för jobbet QueueSettings
Resurser Beräkningsresurskonfiguration för jobbet. JobResourceConfiguration

DistributionKonfiguration

Namn Beskrivning Värde
distributionType Ange objekttyp Mpi
PyTorch
TensorFlow (krävs)

Mpi

Namn Beskrivning Värde
distributionType [Krävs] Anger typ av distributionsramverk. "Mpi" (krävs)
processCountPerInstance Antal processer per MPI-nod. Int

PyTorch

Namn Beskrivning Värde
distributionType [Krävs] Anger typ av distributionsramverk. "PyTorch" (krävs)
processCountPerInstance Antal processer per nod. Int

TensorFlow

Namn Beskrivning Värde
distributionType [Krävs] Anger typ av distributionsramverk. "TensorFlow" (krävs)
parameterServerCount Antal parameterserveruppgifter. Int
workerCount Antal arbetare. Om det inte anges kommer instansantalet att vara standard. Int

CommandJobEnvironmentVariables

Namn Beskrivning Värde
{anpassad egenskap} sträng

CommandJobInputs

Namn Beskrivning Värde
{anpassad egenskap} JobInput

JobInput

Namn Beskrivning Värde
beskrivning Beskrivning av indata. sträng
jobInputType Ange objekttyp custom_model
literal
mlflow_model
mltable
triton_model
uri_file
uri_folder (krävs)

CustomModelJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "custom_model" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

LiteralJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "literal" (krävs)
värde [Krävs] Literalvärde för indata. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

TritonModelJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "triton_model" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

UriFileJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "uri_file" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

UriFolderJobInput

Namn Beskrivning Värde
jobInputType [Krävs] Anger typen av jobb. "uri_folder" (krävs)
läge Inmatningsläge för tillgångsleverans. "Direkt"
"Ladda ned"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

CommandJobLimits

Namn Beskrivning Värde
jobLimitsType [Krävs] JobLimit-typ. "Kommando"
"Svep" (krävs)
Timeout Den maximala körningstiden i ISO 8601-format, varefter jobbet avbryts. Stöder endast varaktighet med så låg precision som Sekunder. sträng

CommandJobOutputs

Namn Beskrivning Värde
{anpassad egenskap} JobOutput

PipelineJob

Namn Beskrivning Värde
jobType [Krävs] Anger typen av jobb. "Pipeline" (krävs)
Ingångar Indata för pipelinejobbet. PipelineJobInputs
Jobb Jobb konstruerar pipelinejobbet. PipelineJobJobs
Utgångar Utdata för pipelinejobbet PipelineJobOutputs
Inställningar Pipelineinställningar, till exempel ContinueRunOnStepFailure osv.
sourceJobId ARM-resurs-ID för källjobbet. sträng

PipelineJobInputs

Namn Beskrivning Värde
{anpassad egenskap} JobInput

PipelineJobJobs

Namn Beskrivning Värde
{anpassad egenskap}

PipelineJobOutputs

Namn Beskrivning Värde
{anpassad egenskap} JobOutput

SweepJob

Namn Beskrivning Värde
jobType [Krävs] Anger typen av jobb. "Svep" (krävs)
earlyTermination Principer för tidig uppsägning gör det möjligt att avbryta dåliga körningar innan de slutförs EarlyTerminationPolicy
Ingångar Mappning av indatabindningar som används i jobbet. SweepJobInputs
Gränser Rensa jobbgräns. SweepJobLimits
objektiv [Krävs] Optimeringsmål. Mål (krävs)
Utgångar Mappning av utdatabindningar som används i jobbet. SweepJobOutputs
queueSettings Köinställningar för jobbet QueueSettings
samplingAlgorithm [Krävs] Algoritmen för hyperparametersampling SamplingAlgorithm (krävs)
searchSpace [Krävs] En ordlista som innehåller varje parameter och dess distribution. Ordlistenyckeln är namnet på parametern
rättegång [Krävs] Utvärderingskomponentdefinition. TrialComponent (krävs)

SweepJobInputs

Namn Beskrivning Värde
{anpassad egenskap} JobInput

SweepJobLimits

Namn Beskrivning Värde
jobLimitsType [Krävs] JobLimit-typ. "Kommando"
"Svep" (krävs)
maxConcurrentTrials Sopa jobb max samtidiga utvärderingsversioner. Int
maxTotalTrials Sopa jobb max totalt antal utvärderingsversioner. Int
Timeout Den maximala körningstiden i ISO 8601-format, varefter jobbet avbryts. Stöder endast varaktighet med så låg precision som Sekunder. sträng
trialTimeout Rensa timeout-värdet för utvärderingsversionen av jobbet. sträng

Objektiv

Namn Beskrivning Värde
mål [Krävs] Definierar måttmål som stöds för justering av hyperparametrar "Maximera"
"Minimera" (krävs)
primaryMetric [Krävs] Namnet på måttet som ska optimeras. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

SweepJobOutputs

Namn Beskrivning Värde
{anpassad egenskap} JobOutput

SamplingAlgorithm

Namn Beskrivning Värde
samplingAlgorithmType Ange objekttyp Bayesianska
Grid
Slumpmässig (krävs)

BayesianSamplingAlgorithm

Namn Beskrivning Värde
samplingAlgorithmType [Krävs] Algoritmen som används för att generera hyperparametervärden, tillsammans med konfigurationsegenskaper "Bayesian" (krävs)

GridSamplingAlgorithm

Namn Beskrivning Värde
samplingAlgorithmType [Krävs] Algoritmen som används för att generera hyperparametervärden, tillsammans med konfigurationsegenskaper "Rutnät" (krävs)

RandomSamplingAlgorithm

Namn Beskrivning Värde
samplingAlgorithmType [Krävs] Algoritmen som används för att generera hyperparametervärden, tillsammans med konfigurationsegenskaper "Random" (krävs)
regel Den specifika typen av slumpmässig algoritm "Slumpmässigt"
"Sobol"
frö Ett valfritt heltal som ska användas som frö för slumptalsgenerering Int

TrialComponent

Namn Beskrivning Värde
codeId ARM-resurs-ID för kodtillgången. sträng
befallning [Krävs] Kommandot som ska köras vid start av jobbet. T.ex. "python train.py" sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
fördelning Distributionskonfiguration för jobbet. Om detta anges ska det vara en av Mpi, Tensorflow, PyTorch eller null. DistributionKonfiguration
environmentId [Krävs] ARM-resurs-ID för miljöspecifikationen för jobbet. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
environmentVariables Miljövariabler som ingår i jobbet. TrialComponentEnvironmentVariables
Resurser Beräkningsresurskonfiguration för jobbet. JobResourceConfiguration

TrialComponentEnvironmentVariables

Namn Beskrivning Värde
{anpassad egenskap} sträng

CreateMonitorAction

Namn Beskrivning Värde
actionType [Krävs] Anger åtgärdstypen för schemat "CreateMonitor" (krävs)
monitorDefinition [Krävs] Definierar övervakaren. MonitorDefinition (krävs)

MonitorDefinition

Namn Beskrivning Värde
alertNotificationSettings Övervakarens meddelandeinställningar. MonitorNotificationSettings
computeConfiguration [Krävs] ARM-resurs-ID för beräkningsresursen som övervakningsjobbet ska köras på. MonitorComputeConfigurationBase (krävs)
monitoringTarget De entiteter som övervakaren riktar in sig på. MonitoringTarget
Signaler [Krävs] Signalerna som ska övervakas. MonitorDefinitionSignals (krävs)

MonitorNotificationSettings

Namn Beskrivning Värde
emailNotificationSettings E-postinställningarna för AML-meddelanden. MonitorEmailNotificationSettings

MonitorEmailNotificationSettings

Namn Beskrivning Värde
e-postmeddelanden Listan över e-postmottagare som har en begränsning på totalt 499 tecken. string[]

MonitorComputeConfigurationBase

Namn Beskrivning Värde
computeType Ange objekttyp ServerlessSpark- (krävs)

MonitorServerlessSparkCompute

Namn Beskrivning Värde
computeType [Krävs] Anger vilken typ av signal som ska övervakas. "ServerlessSpark" (krävs)
computeIdentity [Krävs] Identitetsschemat som används av spark-jobben som körs på serverlösa Spark. MonitorComputeIdentityBase (krävs)
instanceType [Krävs] Instanstypen som kör Spark-jobbet. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
runtimeVersion [Krävs] Spark-körningsversionen. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = ^[0-9]+\.[0-9]+$

MonitorComputeIdentityBase

Namn Beskrivning Värde
computeIdentityType Ange objekttyp AmlToken
ManagedIdentity (krävs)

AmlTokenComputeIdentity

Namn Beskrivning Värde
computeIdentityType [Krävs] Anger vilken typ av identitet som ska användas i övervakningsjobben. "AmlToken" (krävs)

ManagedComputeIdentity

Namn Beskrivning Värde
computeIdentityType [Krävs] Anger vilken typ av identitet som ska användas i övervakningsjobben. "ManagedIdentity" (krävs)
identitet Den identitet som ska användas av övervakningsjobben. ManagedServiceIdentity

ManagedServiceIdentity

Namn Beskrivning Värde
typ Typ av hanterad tjänstidentitet (där både SystemAssigned- och UserAssigned-typer tillåts). "SystemAssigned"
"SystemAssigned,UserAssigned"
"UserAssigned" (krävs)
identity_ids Uppsättningen användartilldelade identiteter som är associerade med resursen. Ordlistenycklarna userAssignedIdentities är ARM-resurs-ID:er i formuläret: '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}. Ordlistevärdena kan vara tomma objekt ({}) i begäranden. Matris med användaridentitets-ID:t.

UserAssignedIdentiteter

Namn Beskrivning Värde
{anpassad egenskap} UserAssignedIdentity

UserAssignedIdentity

Det här objektet innehåller inga egenskaper som ska anges under distributionen. Alla egenskaper är ReadOnly.

MonitoringTarget

Namn Beskrivning Värde
deploymentId Referens till distributionstillgången som den här övervakaren riktar in sig på. sträng
modelId Referens till den modelltillgång som den här övervakaren riktar in sig på. sträng
taskType [Krävs] Maskininlärningsaktivitetstypen för den övervakade modellen. "Klassificering"
"Regression" (krävs)

MonitorDefinitionSignals

Namn Beskrivning Värde
{anpassad egenskap} MonitoringSignalBase

MonitoringSignalBase

Namn Beskrivning Värde
notificationTypes Det aktuella meddelandeläget för den här signalen. Strängmatris som innehåller något av:
"AmlNotification"
Egenskaper Egenskapsordlista. Egenskaper kan läggas till, men inte tas bort eller ändras. MonitoringSignalBaseProperties
signalType Ange objekttyp Anpassad
DataDrift
DataQuality
FeatureAttributionDrift
PredictionDrift (krävs)

MonitoringSignalBaseProperties

Namn Beskrivning Värde
{anpassad egenskap} sträng

CustomMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "Anpassad" (krävs)
componentId [Krävs] Referens till komponenttillgången som används för att beräkna anpassade mått. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
inputAssets Övervaka tillgångar att ta som indata. Nyckeln är komponentens portnamn för indata, värdet är datatillgången. CustomMonitoringSignalInputAssets
Ingångar Extra komponentparametrar att ta som indata. Nyckeln är det komponentliterala indataportnamnet, värdet är parametervärdet. CustomMonitoringSignalInputs
metricThresholds [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. CustomMetricThreshold[] (krävs)

CustomMonitoringSignalInputAssets

Namn Beskrivning Värde
{anpassad egenskap} MonitoringInputDataBase

MonitoringInputDataBase

Namn Beskrivning Värde
Kolumner Mappning av kolumnnamn till särskilda användningsområden. MonitoringInputDataBaseColumns
dataContext Datakällans kontextmetadata. sträng
jobInputType [Krävs] Anger typen av jobb. "custom_model"
"literal"
"mlflow_model"
"mltable"
"triton_model"
"uri_file"
"uri_folder" (krävs)
Uri [Krävs] Indatatillgångs-URI. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
inputDataType Ange objekttyp fast
rullande
Statisk (krävs)

MonitoringInputDataBaseColumns

Namn Beskrivning Värde
{anpassad egenskap} sträng

FixedInputData

Namn Beskrivning Värde
inputDataType [Krävs] Anger vilken typ av signal som ska övervakas. "Fast" (krävs)

RollingInputData

Namn Beskrivning Värde
inputDataType [Krävs] Anger vilken typ av signal som ska övervakas. "Rullande" (krävs)
preprocessingComponentId Referens till komponenttillgången som används för att förbearbeta data. sträng
windowOffset [Krävs] Tidsförskjutningen mellan slutet av datafönstret och övervakarens aktuella körningstid. sträng (krävs)
windowSize [Krävs] Storleken på det rullande datafönstret. sträng (krävs)

StaticInputData

Namn Beskrivning Värde
inputDataType [Krävs] Anger vilken typ av signal som ska övervakas. "Statisk" (krävs)
preprocessingComponentId Referens till komponenttillgången som används för att förbearbeta data. sträng
windowEnd [Krävs] Slutdatumet för datafönstret. sträng (krävs)
windowStart [Krävs] Startdatumet för datafönstret. sträng (krävs)

CustomMonitoringSignalInputs

Namn Beskrivning Värde
{anpassad egenskap} JobInput

CustomMetricThreshold

Namn Beskrivning Värde
metrisk [Krävs] Det användardefinierade mått som ska beräknas. sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold

MonitoringThreshold

Namn Beskrivning Värde
värde Tröskelvärdet. Om värdet är null är standardinställningen beroende av måtttypen. Int

DataDriftMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "DataDrift" (krävs)
featureDataTypeOverride En ordlista som mappar funktionsnamn till respektive datatyper. DataDriftMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings Inställningarna för funktionsvikt för databehandling. FeatureImportanceSettings
Funktioner Funktionsfiltret som identifierar vilken funktion som ska beräkna överdrift. MonitoringFeatureFilterBase
metricThresholds [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. DataDriftMetricThresholdBase[] (krävs)
productionData [Krävs] De data som avdriften beräknas för. MonitoringInputDataBase (krävs)
referenceData [Krävs] Data som ska beräknas avdrift mot. MonitoringInputDataBase (krävs)

DataDriftMonitoringSignalFeatureDataTypeOverride

Namn Beskrivning Värde
{anpassad egenskap} "Kategorisk"
"Numeriskt"

FeatureImportanceSettings

Namn Beskrivning Värde
läge Funktionssättet för beräkning av funktionsvikt. "Inaktiverad"
"Aktiverad"
targetColumn Namnet på målkolumnen i indatatillgången. sträng

MonitoringFeatureFilterBase

Namn Beskrivning Värde
filterType Ange objekttyp AllFeatures
FeatureSubset
TopNByAttribution (krävs)

Allafeatures

Namn Beskrivning Värde
filterType [Krävs] Anger det funktionsfilter som ska användas när du väljer funktioner för att beräkna mått över. "AllFeatures" (krävs)

FeatureSubset

Namn Beskrivning Värde
filterType [Krävs] Anger det funktionsfilter som ska användas när du väljer funktioner för att beräkna mått över. "FeatureSubset" (krävs)
Funktioner [Krävs] Listan över funktioner som ska inkluderas. string[] (krävs)

TopNFeaturesByAttribution

Namn Beskrivning Värde
filterType [Krävs] Anger det funktionsfilter som ska användas när du väljer funktioner för att beräkna mått över. "TopNByAttribution" (krävs)
topp Antalet viktigaste funktioner som ska inkluderas. Int

DataDriftMetricThresholdBase

Namn Beskrivning Värde
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold
Datatyp Ange objekttyp kategorisk
numeriska (krävs)

CategoricalDataDriftMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Kategorisk" (krävs)
metrisk [Krävs] Det kategoriska dataavvikelsemåttet som ska beräknas. "JensenShannonDistance"
"PearsonsChiSquaredTest"
"PopulationStabilityIndex" (krävs)

NumeriskaDataDriftMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Numerisk" (krävs)
metrisk [Krävs] Det numeriska dataavvikelsemåttet som ska beräknas. "JensenShannonDistance"
"NormalizedWassersteinDistance"
"PopulationStabilityIndex"
"TwoSampleKolmogorovSmirnovTest" (krävs)

DataQualityMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "DataQuality" (krävs)
featureDataTypeOverride En ordlista som mappar funktionsnamn till respektive datatyper. DataQualityMonitoringSignalFeatureDataTypeOverride
featureImportanceSettings Inställningarna för funktionsvikt för databehandling. FeatureImportanceSettings
Funktioner Funktionerna för att beräkna drift över. MonitoringFeatureFilterBase
metricThresholds [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. DataQualityMetricThresholdBase[] (krävs)
productionData [Krävs] De data som produceras av produktionstjänsten som driften beräknas för. MonitoringInputDataBase (krävs)
referenceData [Krävs] Data som ska beräknas avdrift mot. MonitoringInputDataBase (krävs)

DataQualityMonitoringSignalFeatureDataTypeOverride

Namn Beskrivning Värde
{anpassad egenskap} "Kategorisk"
"Numeriskt"

DataQualityMetricThresholdBase

Namn Beskrivning Värde
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold
Datatyp Ange objekttyp kategorisk
numeriska (krävs)

CategoricalDataQualityMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Kategorisk" (krävs)
metrisk [Krävs] Det kategoriska datakvalitetsmåttet som ska beräknas. "DataTypeErrorRate"
"NullValueRate"
"OutOfBoundsRate" (krävs)

NumeriskadataQualityMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Numerisk" (krävs)
metrisk [Krävs] Det numeriska datakvalitetsmåttet som ska beräknas. "DataTypeErrorRate"
"NullValueRate"
"OutOfBoundsRate" (krävs)

FeatureAttributionDriftMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "FeatureAttributionDrift" (krävs)
featureDataTypeOverride En ordlista som mappar funktionsnamn till respektive datatyper. FeatureAttributionDriftMonitoringSignalFeatureDataTy...
featureImportanceSettings [Krävs] Inställningarna för funktionsvikt för databehandling. FeatureImportanceSettings (krävs)
metricThreshold [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. FeatureAttributionMetricThreshold (krävs)
productionData [Krävs] De data som avdriften beräknas för. MonitoringInputDataBase[] (krävs)
referenceData [Krävs] Data som ska beräknas avdrift mot. MonitoringInputDataBase (krävs)

FeatureAttributionDriftMonitoringSignalFeatureDataTy...

Namn Beskrivning Värde
{anpassad egenskap} "Kategorisk"
"Numeriskt"

FeatureAttributionMetricThreshold

Namn Beskrivning Värde
metrisk [Krävs] Måttet för funktionstillskrivning som ska beräknas. "NormalizedDiscountedCumulativeGain" (krävs)
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold

PredictionDriftMonitoringSignal

Namn Beskrivning Värde
signalType [Krävs] Anger vilken typ av signal som ska övervakas. "PredictionDrift" (krävs)
featureDataTypeOverride En ordlista som mappar funktionsnamn till respektive datatyper. PredictionDriftMonitoringSignalFeatureDataTypeOverri...
metricThresholds [Krävs] En lista över mått som ska beräknas och deras associerade tröskelvärden. PredictionDriftMetricThresholdBase[] (krävs)
productionData [Krävs] De data som avdriften beräknas för. MonitoringInputDataBase (krävs)
referenceData [Krävs] Data som ska beräknas avdrift mot. MonitoringInputDataBase (krävs)

PredictionDriftMonitoringSignalFeatureDataTypeOverri...

Namn Beskrivning Värde
{anpassad egenskap} "Kategorisk"
"Numeriskt"

PredictionDriftMetricThresholdBase

Namn Beskrivning Värde
tröskel Tröskelvärdet. Om värdet är null anges ett standardvärde beroende på det valda måttet. MonitoringThreshold
Datatyp Ange objekttyp kategorisk
numeriska (krävs)

CategoricalPredictionDriftMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Kategorisk" (krävs)
metrisk [Krävs] Det kategoriska förutsägelseavvikelsemåttet som ska beräknas. "JensenShannonDistance"
"PearsonsChiSquaredTest"
"PopulationStabilityIndex" (krävs)

NumerisktPredictionDriftMetricThreshold

Namn Beskrivning Värde
Datatyp [Krävs] Anger datatypen för måtttröskeln. "Numerisk" (krävs)
metrisk [Krävs] Det numeriska förutsägelseavvikelsemåttet som ska beräknas. "JensenShannonDistance"
"NormalizedWassersteinDistance"
"PopulationStabilityIndex"
"TwoSampleKolmogorovSmirnovTest" (krävs)

EndpointScheduleAction

Namn Beskrivning Värde
actionType [Krävs] Anger åtgärdstypen för schemat "InvokeBatchEndpoint" (krävs)
endpointInvocationDefinition [Krävs] Definierar information om schemalägg åtgärdsdefinition.
{se href="TBD" /}

TriggerBase

Namn Beskrivning Värde
endTime Anger sluttid för schemat i ISO 8601, men utan UTC-förskjutning. Se https://en.wikipedia.org/wiki/ISO_8601.
Omkommenterat format skulle vara "2022-06-01T00:00:01"
Om det inte finns körs schemat på obestämd tid
sträng
startTime Anger starttid för schemat i ISO 8601-format, men utan UTC-förskjutning. sträng
timeZone Anger tidszon där schemat körs.
Tidszon bör följa Windows tidszonsformat. Se: /windows-hardware/manufacture/desktop/default-time-zones/>
sträng
triggerType Ange objekttyp Cron
återkommande (krävs)

CronTrigger

Namn Beskrivning Värde
triggerType [Krävs] "Cron" (krävs)
uttryck [Krävs] Anger cron-uttryck för schema.
Uttrycket bör följa formatet NCronTab.
sträng (krävs)

Begränsningar:
Min längd = 1
Mönster = [a-zA-Z0-9_]

RecurrenceTrigger

Namn Beskrivning Värde
endTime Anger sluttid för schemat i ISO 8601, men utan UTC-förskjutning. Se https://en.wikipedia.org/wiki/ISO_8601.
Omkommenterat format skulle vara "2022-06-01T00:00:01"
Om det inte finns körs schemat på obestämd tid
sträng
frekvens [Krävs] Frekvensen för att utlösa schemat. "Dag"
"Timme"
"Minut"
"Månad"
"Vecka" (krävs)
intervall [Krävs] Anger schemaintervall tillsammans med frekvens int (krävs)
schema Upprepningsschemat. RecurrenceSchedule
startTime Anger starttid för schemat i ISO 8601-format, men utan UTC-förskjutning. sträng
timeZone Anger tidszon där schemat körs.
Tidszon bör följa Windows tidszonsformat. Se: /windows-hardware/manufacture/desktop/default-time-zones
sträng
triggerType [Krävs] "Cron"
"Upprepning" (krävs)

RecurrenceSchedule

Namn Beskrivning Värde
Timmar [Krävs] Lista över timmar för schemat. int[] (krävs)
protokoll [Krävs] Lista över minuter för schemat. int[] (krävs)
monthDays Lista över månadsdagar för schemat int[]
Vardagar Lista över dagar för schemat. Strängmatris som innehåller något av:
"Fredag"
"Måndag"
"Lördag"
"Söndag"
"Torsdag"
"Tisdag"
"Onsdag"