Amerikansk befolkning efter kön och ras för varje amerikanskt postnummer från 2000 och 2010 Decennial Census.
Den här datamängden kommer från USA Census Bureaus API:er för decennial censusdatauppsättning. Läs Terms of Service och Policies and Notices om villkor och bestämmelser avseende denna datamängd.
Kommentar
Microsoft tillhandahåller Azure Open Datasets i befintligt fall. Microsoft ger inga garantier, uttryckliga eller underförstådda garantier eller villkor för din användning av datauppsättningarna. I den utsträckning som tillåts enligt din lokala lag frånsäger sig Microsoft allt ansvar för eventuella skador eller förluster, inklusive direkt, följdriktig, särskild, indirekt, tillfällig eller straffbar, till följd av din användning av datauppsättningarna.
Datamängden tillhandahålls enligt de ursprungliga villkor som gällde när Microsoft tog emot källdatan. Datamängden kan innehålla data från Microsoft.
Volym och kvarhållning
Datamängden lagras i Parquet-format och innehåller data för år 2010.
Lagringsplats
Datamängden lagras i Azure-regionen Östra USA. Vi rekommenderar att beräkningsresurser tilldelas i Östra USA av tillhörighetsskäl.
# This is a package in preview.
from azureml.opendatasets import UsPopulationZip
population = UsPopulationZip()
population_df = population.to_pandas_dataframe()
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient
if azure_storage_account_name is None or azure_storage_sas_token is None:
raise Exception(
"Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")
print('Looking for the first parquet under the folder ' +
folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
container_url, azure_storage_sas_token if azure_storage_sas_token else None)
container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
targetBlobName = blob.name
break
print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
blob_client.download_blob().download_to_stream(local_file)
# Read the parquet file into Pandas data frame
import pandas as pd
print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
Exempel är inte tillgängligt för den här kombinationen av plattform/paket.
# This is a package in preview.
from azureml.opendatasets import UsPopulationZip
population = UsPopulationZip()
population_df = population.to_spark_dataframe()
display(population_df.limit(5))
Exempel är inte tillgängligt för den här kombinationen av plattform/paket.
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))
# This is a package in preview.
from azureml.opendatasets import UsPopulationZip
population = UsPopulationZip()
population_df = population.to_spark_dataframe()
# Display top 5 rows
display(population_df.limit(5))
Exempel är inte tillgängligt för den här kombinationen av plattform/paket.
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))
Nästa steg
Visa resten av datauppsättningarna i katalogen Öppna datamängder.