Dela via


Databricks Runtime 8.0 för ML (EoS)

Kommentar

Stödet för den här Databricks Runtime-versionen har upphört. Information om slutdatumet för support finns i Historik över supportens slut. Alla Databricks Runtime-versioner som stöds finns i Databricks Runtime-versionsanteckningar och kompatibilitet.

Databricks släppte den här versionen i mars 2021.

Databricks Runtime 8.0 för Machine Learning ger en färdig miljö för maskininlärning och datavetenskap baserat på Databricks Runtime 8.0 (EoS). Databricks Runtime ML innehåller många populära maskininlärningsbibliotek, inklusive TensorFlow, PyTorch och XGBoost. Den stöder även distribuerad djupinlärningsträning med Horovod.

Mer information, inklusive instruktioner för att skapa ett Databricks Runtime ML-kluster, finns i AI och maskininlärning på Databricks.

Nya funktioner och större ändringar

Databricks Runtime 8.0 ML bygger på Databricks Runtime 8.0. Information om nyheter i Databricks Runtime 8.0, inklusive Apache Spark MLlib och SparkR, finns i viktig information om Databricks Runtime 8.0 (EoS).

Konfiguration av Conda-kanal

I september 2020 uppdaterade Anaconda Inc. sina tjänstvillkor för anaconda.org kanaler. Baserat på de nya tjänstvillkoren kan du kräva en kommersiell licens om du förlitar dig på Anacondas paketering och distribution. Mer information finns i Vanliga frågor och svar om Anaconda Commercial Edition. Som ett resultat av den här ändringen tog vi bort standardkanalkonfigurationen för Conda-pakethanteraren i Databricks Runtime ML 8.0. Om du vill installera eller uppdatera paket med %conda kommandot måste du ange en kanal. Din användning av Anaconda-kanaler styrs av deras användarvillkor.

Större ändringar i Databricks Runtime ML Python-miljön

Se Databricks Runtime 8.0 (EoS) för större ändringar i Databricks Runtime Python-miljön. En fullständig lista över installerade Python-paket och deras versioner finns i Python-bibliotek.

Större ändringar i miljön

  • Conda-standardkanalerna har tagits bort.
  • Python-standardversionen har uppdaterats från 3.7.6 till 3.8.5.
  • TensorFlow 1.x stöds inte längre.

Uppgraderade Python-paket

  • tensorboard 2.3.1 -> 2.4.1
  • tensorflow 2.3.1 -> 2.4.0
  • matplotlib 3.1.3 -> 3.2.2
  • joblib 0.14.1 –> 0.17.0
  • petastorm 0.9.7 -> 0.9.8
  • cloudpickle 1.4.1 –> 1.6.0
  • nltk 3.4.5 -> 3.5
  • Paket i Anaconda-distributionen har uppgraderats från 2020.02 till 2020.11

Python-paket har lagts till

  • shap: 0.37.0

Python-paket har tagits bort

  • gorilla
  • backportar

Systemmiljö

Systemmiljön i Databricks Runtime 8.0 ML skiljer sig från Databricks Runtime 8.0 på följande sätt:

Bibliotek

I följande avsnitt visas de bibliotek som ingår i Databricks Runtime 8.0 ML som skiljer sig från de som ingår i Databricks Runtime 8.0.

I detta avsnitt:

Bibliotek på den översta nivån

Databricks Runtime 8.0 ML innehåller följande bibliotek på den översta nivån:

Python-bibliotek

Databricks Runtime 8.0 ML använder Conda för Python-pakethantering och innehåller många populära ML-paket.

Förutom de paket som anges i Conda-miljöerna i följande avsnitt innehåller Databricks Runtime 8.0 ML även följande paket:

  • hyperopt 0.2.5.db1
  • sparkdl 2.1.0.db4

Python-bibliotek i CPU-kluster

name: databricks-ml
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.11.0=pyhd3eb1b0_1
  - aiohttp=3.6.3=py38h7b6447c_0
  - asn1crypto=1.4.0=py_0
  - astor=0.8.1=py38_0
  - async-timeout=3.0.1=py38_0
  - attrs=20.3.0=pyhd3eb1b0_0
  - backcall=0.2.0=py_0
  - bcrypt=3.2.0=py38h7b6447c_0
  - blas=1.0=mkl
  - blinker=1.4=py38_0
  - boto3=1.16.7=pyhd3eb1b0_0
  - botocore=1.19.7=pyhd3eb1b0_0
  - brotlipy=0.7.0=py38h27cfd23_1003
  - c-ares=1.17.1=h27cfd23_0
  - ca-certificates=2021.4.13=h06a4308_1 # (updated from 2021.1.19 in May 26, 2021 maintenance update)
  - cachetools=4.2.0=pyhd3eb1b0_0
  - certifi=2020.12.5=py38h06a4308_0
  - cffi=1.14.3=py38h261ae71_2
  - chardet=3.0.4=py38h06a4308_1003
  - click=7.1.2=pyhd3eb1b0_0
  - cloudpickle=1.6.0=py_0
  - configparser=5.0.1=py_0
  - cpuonly=1.0=0
  - cryptography=3.1.1=py38h1ba5d50_0
  - cycler=0.10.0=py38_0
  - cython=0.29.21=py38h2531618_0
  - decorator=4.4.2=py_0
  - dill=0.3.2=py_0
  - docutils=0.15.2=py38_0
  - entrypoints=0.3=py38_0
  - flask=1.1.2=py_0
  - freetype=2.10.4=h5ab3b9f_0
  - future=0.18.2=py38_1
  - gitdb=4.0.5=py_0
  - gitpython=3.1.11=pyhd3eb1b0_1
  - google-auth=1.22.1=py_0
  - google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
  - google-pasta=0.2.0=py_0
  - gunicorn=20.0.4=py38_0
  - h5py=2.10.0=py38h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.10=pyhd3eb1b0_0
  - importlib-metadata=2.0.0=py_1
  - intel-openmp=2019.4=243
  - ipykernel=5.3.4=py38h5ca1d4c_0
  - ipython=7.19.0=py38hb070fc8_1
  - ipython_genutils=0.2.0=pyhd3eb1b0_1
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=py_0
  - jedi=0.17.2=py38h06a4308_1
  - jinja2=2.11.2=pyhd3eb1b0_0
  - jmespath=0.10.0=py_0
  - joblib=0.17.0=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=6.1.7=py_0
  - jupyter_core=4.6.3=py38_0
  - kiwisolver=1.3.0=py38h2531618_0
  - krb5=1.17.1=h173b8e3_0
  - lcms2=2.11=h396b838_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20191231=h14c3975_1
  - libffi=3.3=he6710b0_2
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=12.2=h20c2e04_0
  - libprotobuf=3.13.0.1=hd408876_0
  - libsodium=1.0.18=h7b6447c_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_1
  - lightgbm=3.1.1=py38h2531618_0
  - lz4-c=1.9.2=heb0550a_3
  - mako=1.1.3=py_0
  - markdown=3.3.2=py38_0
  - markupsafe=1.1.1=py38h7b6447c_0
  - matplotlib-base=3.2.2=py38hef1b27d_0
  - mkl=2019.4=243
  - mkl-service=2.3.0=py38he904b0f_0
  - mkl_fft=1.2.0=py38h23d657b_0
  - mkl_random=1.1.0=py38h962f231_0
  - more-itertools=8.6.0=pyhd3eb1b0_0
  - multidict=4.7.6=py38h7b6447c_1
  - ncurses=6.2=he6710b0_1
  - networkx=2.5=py_0
  - nltk=3.5=py_0
  - numpy=1.19.2=py38h54aff64_0
  - numpy-base=1.19.2=py38hfa32c7d_0
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py_0
  - openssl=1.1.1k=h27cfd23_0 # (updated from 1.1.1i in May 26, 2021 maintenance update)
  - packaging=20.4=py_0
  - pandas=1.1.3=py38he6710b0_0
  - paramiko=2.7.2=py_0
  - parso=0.7.0=py_0
  - patsy=0.5.1=py38_0
  - pexpect=4.8.0=pyhd3eb1b0_3
  - pickleshare=0.7.5=pyhd3eb1b0_1003
  - pillow=8.0.1=py38he98fc37_0
  - pip=20.2.4=py38h06a4308_0
  - plotly=4.14.2=pyhd3eb1b0_0
  - prompt-toolkit=3.0.8=py_0
  - prompt_toolkit=3.0.8=0
  - protobuf=3.13.0.1=py38he6710b0_1
  - psutil=5.7.2=py38h7b6447c_0
  - psycopg2=2.8.5=py38h3c74f83_1
  - ptyprocess=0.6.0=pyhd3eb1b0_2
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.8=py_0
  - pycparser=2.20=py_2
  - pygments=2.7.2=pyhd3eb1b0_0
  - pyjwt=1.7.1=py38_0
  - pynacl=1.4.0=py38h7b6447c_1
  - pyodbc=4.0.30=py38he6710b0_0
  - pyopenssl=19.1.0=pyhd3eb1b0_1
  - pyparsing=2.4.7=pyhd3eb1b0_0
  - pysocks=1.7.1=py38h06a4308_0
  - python=3.8.8=hdb3f193_4 # (updated from 3.8.5 in May 26, 2021 maintenance update)
  - python-dateutil=2.8.1=py_0
  - python-editor=1.0.4=py_0
  - pytz=2020.1=py_0
  - pyzmq=19.0.2=py38he6710b0_1
  - readline=8.0=h7b6447c_0
  - regex=2020.10.15=py38h7b6447c_0
  - requests=2.24.0=py_0
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py_2
  - rsa=4.7=pyhd3eb1b0_1
  - s3transfer=0.3.4=pyhd3eb1b0_0
  - scikit-learn=0.23.2=py38h0573a6f_0
  - scipy=1.5.2=py38h0b6359f_0
  - setuptools=50.3.1=py38h06a4308_1
  - simplejson=3.17.2=py38h7b6447c_0
  - six=1.15.0=py38h06a4308_0
  - smmap=3.0.4=py_0
  - sqlite=3.33.0=h62c20be_0
  - sqlparse=0.4.1=py_0
  - statsmodels=0.12.0=py38h7b6447c_0
  - tabulate=0.8.7=py38_0
  - threadpoolctl=2.1.0=pyh5ca1d4c_0
  - tk=8.6.10=hbc83047_0
  - tornado=6.0.4=py38h7b6447c_1
  - tqdm=4.50.2=py_0
  - traitlets=5.0.5=py_0
  - typing_extensions=3.7.4.3=py_0
  - unixodbc=2.3.9=h7b6447c_0
  - urllib3=1.25.11=py_0
  - wcwidth=0.2.5=py_0
  - websocket-client=0.57.0=py38_2
  - werkzeug=1.0.1=py_0
  - wheel=0.35.1=pyhd3eb1b0_0
  - wrapt=1.12.1=py38h7b6447c_1
  - xz=5.2.5=h7b6447c_0
  - yarl=1.6.3=py38h27cfd23_0
  - zeromq=4.3.3=he6710b0_3
  - zipp=3.4.0=pyhd3eb1b0_0
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.4.5=h9ceee32_0
  - pip:
    - astunparse==1.6.3
    - azure-core==1.10.0
    - azure-storage-blob==12.7.0
    - databricks-cli==0.14.1
    - diskcache==5.1.0
    - docker==4.4.1
    - flatbuffers==1.12
    - gast==0.3.3
    - grpcio==1.32.0
    - horovod==0.21.1
    - joblibspark==0.3.0
    - keras-preprocessing==1.1.2
    - koalas==1.5.0
    - llvmlite==0.35.0
    - mleap==0.16.1
    - mlflow==1.13.1
    - msrest==0.6.19
    - numba==0.52.0
    - opt-einsum==3.3.0
    - petastorm==0.9.8
    - pyarrow==1.0.1
    - pyyaml==5.4
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - shap==0.37.0
    - slicer==0.0.3
    - spark-tensorflow-distributor==0.1.0
    - tensorboard==2.4.1
    - tensorboard-plugin-wit==1.8.0
    - tensorflow-cpu==2.4.0
    - tensorflow-estimator==2.4.0
    - termcolor==1.1.0
    - torch==1.7.1
    - torchvision==0.8.2
    - xgboost==1.3.1
prefix: /databricks/conda/envs/databricks-ml

Spark-paket som innehåller Python-moduler

Spark-paket Python-modul Version
graphframes graphframes 0.8.1-db2-spark3.1

R-bibliotek

R-biblioteken är identiska med R-biblioteken i Databricks Runtime 8.0.

Java- och Scala-bibliotek (Scala 2.12-kluster)

Förutom Java- och Scala-bibliotek i Databricks Runtime 8.0 innehåller Databricks Runtime 8.0 ML följande JAR:er:

CPU-kluster

Grupp-ID Artefakt-ID Version
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.0-4882dc3
ml.dmlc xgboost4j-spark_2.12 1.3.1
ml.dmlc xgboost4j_2.12 1.3.1
org.graphframes graphframes_2.12 0.8.1-db2-spark3.1
org.mlflow mlflow-client 1.13.1
org.mlflow mlflow-spark 1.13.1
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0