Dela via


Databricks Runtime 5.2 ML

Databricks släppte den här versionen i januari 2019.

Databricks Runtime 5.2 ML tillhandahåller en färdig miljö för maskininlärning och datavetenskap baserat på Databricks Runtime 5.2 (EoS). Databricks Runtime för ML innehåller många populära maskininlärningsbibliotek, inklusive TensorFlow, PyTorch, Keras och XGBoost. Den stöder även distribuerad TensorFlow-träning med Horovod.

Mer information, inklusive instruktioner för att skapa ett Databricks Runtime ML-kluster, finns i AI och maskininlärning på Databricks.

Nya funktioner

Databricks Runtime 5.2 ML bygger på Databricks Runtime 5.2. Information om nyheter i Databricks Runtime 5.2 finns i viktig information om Databricks Runtime 5.2 (EoS). Förutom biblioteksuppdateringar introducerar Databricks Runtime 5.2 ML följande nya funktioner:

  • GraphFrames stöder nu Pregel API (Python) med Databricks prestandaoptimeringar.
  • HorovodRunner lägger till:
    • I ett GPU-kluster mappas träningsprocesser till GPU:er i stället för arbetsnoder för att förenkla stödet för instanstyper för flera GPU:er. Med det här inbyggda stödet kan du distribuera till alla GPU:er på en dator med flera GPU:er utan anpassad kod.
    • HorovodRunner.run() returnerar nu returvärdet från den första träningsprocessen.

Kommentar

Databricks Runtime ML-versioner hämtar alla underhållsuppdateringar till basversionen av Databricks Runtime. En lista över alla underhållsuppdateringar finns i Underhållsuppdateringar för Databricks Runtime (arkiverad).

Systemmiljö

Systemmiljön i Databricks Runtime 5.2 ML skiljer sig från Databricks Runtime 5.2 på följande sätt:

  • Python: 2.7.15 för Python 2-kluster och 3.6.5 för Python 3-kluster.
  • DBUtils: Databricks Runtime 5.2 ML innehåller inte biblioteksverktyget (dbutils.library) (äldre).
  • Följande NVIDIA GPU-bibliotek för GPU-kluster:
    • Tesla-förare 396,44
    • CUDA 9.2
    • CUDNN 7.2.1

Bibliotek

I följande avsnitt visas de bibliotek som ingår i Databricks Runtime 5.2 ML som skiljer sig från de som ingår i Databricks Runtime 5.2.

Python-bibliotek

Databricks Runtime 5.2 ML använder Conda för Python-pakethantering. Därför finns det stora skillnader i förinstallerade Python-bibliotek jämfört med Databricks Runtime. Följande är en fullständig lista över tillhandahållna Python-paket och versioner som installerats med Conda-pakethanteraren.

Bibliotek Version Bibliotek Version Bibliotek Version
absl-py 0.6.1 argparse 1.4.0 asn1crypto 0.24.0
Astor 0.7.1 backports-abc 0,5 backports.functools-lru-cache 1.5
backports.weakref 1.0.post1 bcrypt 3.1.5 blekmedel 2.1.3
boto 2.48.0 boto3 1.7.62 botocore 1.10.62
certifi 2018.04.16 cffi 1.11.5 chardet 3.0.4
cloudpickle 0.5.3 colorama 0.3.9 configparser 3.5.0
kryptografi 2.2.2 cyklist 0.10.0 Cython 0.28.2
dekoratör 4.3.0 docutils 0,14 entrypoints 0.2.3
uppräkning 34 1.1.6 et-xmlfile 1.0.1 funcsigs 1.0.2
functools32 3.2.3-2 fusepy 2.0.4 Terminer 3.2.0
Gast 0.2.0 grpcio 1.12.1 h5py 2.8.0
horovod 0.15.2 html5lib 1.0.1 idna 2,6
ipaddress 1.0.22 ipython 5.7.0 ipython_genutils 0.2.0
jdcal 1.4 Jinja2 2.10 jmespath 0.9.3
jsonschema 2.6.0 jupyter-client 5.2.3 jupyter-core 4.4.0
Keras 2.2.4 Keras-Applications 1.0.6 Keras-förbearbetning 1.0.5
kiwisolver 1.0.1 linecache2 1.0.0 llvmlite 0.23.1
lxml 4.2.1 Markdown 3.0.1 MarkupSafe 1.0
matplotlib 2.2.2 mistune 0.8.3 mleap 0.8.1
håna 2.0.0 msgpack 0.5.6 nbconvert 5.3.1
nbformat 4.4.0 näsa 1.3.7 näsa-exkludera 0.5.0
numba 0.38.0+0.g2a2b772fc.dirty numpy 1.14.3 olefile 0.45.1
openpyxl 2.5.3 Pandas 0.23.0 pandocfilter 1.4.2
paramiko 2.4.1 pathlib2 2.3.2 Patsy 0.5.0
pbr 5.1.1 pexpect 4.5.0 pickleshare 0.7.4
Kudde 5.1.0 pip 10.0.1 Ply 3.11
prompt-toolkit 1.0.15 protobuf 3.6.1 psycopg2 2.7.5
ptyprocess 0.5.2 pyarrow 0.8.0 pyasn1 0.4.4
pycparser 2.18 Pygments 2.2.0 PyNaCl 1.3.0
pyOpenSSL 18.0.0 pyparsing 2.2.0 PySocks 1.6.8
Python 2.7.15 python-dateutil 2.7.3 pytz 2018.4
PyYAML 3.12 pyzmq 17.0.0 begäranden 2.18.4
s3transfer 0.1.13 scandir 1,7 scikit-learn 0.19.1
scipy 1.1.0 seaborn 0.8.1 setuptools 39.1.0
simplegeneric 0.8.1 singledispatch 3.4.0.3 sex 1.11.0
statsmodels 0.9.0 subprocess32 3.5.3 tensorboard 1.12.2
tensorboardX 1.4 tensorflow 1.12.0 termcolor 1.1.0
testpath 0.3.1 fackla 0.4.1 torchvision 0.2.1
tromb 5.0.2 traceback2 1.4.0 traitlets 4.3.2
unittest2 1.1.0 urllib3 1.22 virtualenv 16.0.0
wcwidth 0.1.7 webencodings 0.5.1 Werkzeug 0.14.1
hjul 0.31.1 wrapt 1.10.11 wsgiref 0.1.2

Dessutom innehåller följande Spark-paket Python-moduler:

Spark-paket Python-modul Version
graphframes graphframes 0.7.0-db1-spark2.4
spark-deep-learning sparkdl 1.5.0-db1-spark2.4
tensorframes tensorframes 0.6.0-s_2.11

R-bibliotek

R-biblioteken är identiska med R-biblioteken i Databricks Runtime 5.2.

Java- och Scala-bibliotek (Scala 2.11-kluster)

Förutom Java- och Scala-bibliotek i Databricks Runtime 5.2 innehåller Databricks Runtime 5.2 ML följande JAR:er:

Grupp-ID Artefakt-ID Version
com.databricks spark-deep-learning 1.5.0-db1-spark2.4
com.typesafe.akka akka-actor_2.11 2.3.11
ml.combust.mleap mleap-databricks-runtime_2.11 0.13.0
ml.dmlc xgboost4j 0,81
ml.dmlc xgboost4j-spark 0,81
org.graphframes graphframes_2.11 0.7.0-db1-spark2.4
org.tensorflow libtensorflow 1.12.0
org.tensorflow libtensorflow_jni 1.12.0
org.tensorflow spark-tensorflow-connector_2.11 1.12.0
org.tensorflow tensorflow 1.12.0
org.tensorframes tensorframes 0.6.0-s_2.11