Dela via


Djupinlärning

Den här artikeln ger en kort introduktion till hur du använder PyTorch, Tensorflow och distribuerad utbildning för att utveckla och finjustera djupinlärningsmodeller i Azure Databricks. Den innehåller även länkar till sidor med exempelanteckningsböcker som illustrerar hur du använder dessa verktyg.

PyTorch

PyTorch ingår i Databricks Runtime ML och tillhandahåller GPU-accelererad tensorberäkning och funktioner på hög nivå för att skapa djupinlärningsnätverk. Du kan utföra träning med en nod eller distribuerad träning med PyTorch på Databricks. Se PyTorch.

TensorFlow

Databricks Runtime ML innehåller TensorFlow och TensorBoard, så du kan använda dessa bibliotek utan att installera några paket. TensorFlow stöder djupinlärning och allmänna numeriska beräkningar på processorer, GPU:er och kluster av GPU:er. TensorBoard innehåller visualiseringsverktyg som hjälper dig att felsöka och optimera arbetsflöden för maskininlärning och djupinlärning. Se TensorFlow för enkla noder och distribuerade träningsexempel.

Distribuerad träning

Eftersom djupinlärningsmodeller är data- och beräkningsintensiva kan distribuerad träning vara viktig. Exempel på distribuerad djupinlärning med hjälp av integreringar med Ray, TorchDistributor och DeepSpeed finns i Distribuerad utbildning.

Spåra utveckling av djupinlärningsmodeller

Spårning är fortfarande en hörnsten i MLflow-ekosystemet och är särskilt viktigt för djupinlärningens iterativa natur. Databricks använder MLflow för att spåra träningskörningar för djupinlärning och modellutveckling. Se Spåra modellutveckling med MLflow.