Skapa/infoga data i Azure Cosmos DB för Apache Cassandra från Spark
GÄLLER FÖR: Kassandra
Den här artikeln beskriver hur du infogar exempeldata i en tabell i Azure Cosmos DB för Apache Cassandra från Spark.
API för Cassandra-konfiguration
Ställ in spark-konfigurationen nedan i notebook-klustret. Det är en engångsaktivitet.
//Connection-related
spark.cassandra.connection.host YOUR_ACCOUNT_NAME.cassandra.cosmosdb.azure.com
spark.cassandra.connection.port 10350
spark.cassandra.connection.ssl.enabled true
spark.cassandra.auth.username YOUR_ACCOUNT_NAME
spark.cassandra.auth.password YOUR_ACCOUNT_KEY
// if using Spark 2.x
// spark.cassandra.connection.factory com.microsoft.azure.cosmosdb.cassandra.CosmosDbConnectionFactory
//Throughput-related...adjust as needed
spark.cassandra.output.batch.size.rows 1
// spark.cassandra.connection.connections_per_executor_max 10 // Spark 2.x
spark.cassandra.connection.remoteConnectionsPerExecutor 10 // Spark 3.x
spark.cassandra.output.concurrent.writes 1000
spark.cassandra.concurrent.reads 512
spark.cassandra.output.batch.grouping.buffer.size 1000
spark.cassandra.connection.keep_alive_ms 600000000
Kommentar
Om du använder Spark 3.x behöver du inte installera Azure Cosmos DB-hjälpen och anslutningsfabriken. Du bör också använda remoteConnectionsPerExecutor
i stället connections_per_executor_max
för för Spark 3-anslutningsappen (se ovan).
Varning
Spark 3-exemplen som visas i den här artikeln har testats med Spark version 3.2.1 och motsvarande Cassandra Spark Connector com.datastax.spark:spark-cassandra-connector-assembly_2.12:3.2.0. Senare versioner av Spark och/eller Cassandra-anslutningsappen kanske inte fungerar som förväntat.
Dataframe-API
Skapa en dataram med exempeldata
import org.apache.spark.sql.cassandra._
//Spark connector
import com.datastax.spark.connector._
import com.datastax.spark.connector.cql.CassandraConnector
//if using Spark 2.x, CosmosDB library for multiple retry
//import com.microsoft.azure.cosmosdb.cassandra
// Generate a dataframe containing five records
val booksDF = Seq(
("b00001", "Arthur Conan Doyle", "A study in scarlet", 1887),
("b00023", "Arthur Conan Doyle", "A sign of four", 1890),
("b01001", "Arthur Conan Doyle", "The adventures of Sherlock Holmes", 1892),
("b00501", "Arthur Conan Doyle", "The memoirs of Sherlock Holmes", 1893),
("b00300", "Arthur Conan Doyle", "The hounds of Baskerville", 1901)
).toDF("book_id", "book_author", "book_name", "book_pub_year")
//Review schema
booksDF.printSchema
//Print
booksDF.show
Kommentar
Funktionen "Skapa om den inte finns" på radnivå stöds ännu inte.
Spara till Azure Cosmos DB för Apache Cassandra
När du sparar data kan du också ange inställningar för time-to-live- och konsekvensprinciper enligt följande exempel:
//Persist
booksDF.write
.mode("append")
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks", "output.consistency.level" -> "ALL", "ttl" -> "10000000"))
.save()
Verifiera i cqlsh
use books_ks;
select * from books;
Api för elastisk distribuerad databas (RDD)
Skapa en RDD med exempeldata
//Drop and re-create table to delete records created in the previous section
val cdbConnector = CassandraConnector(sc)
cdbConnector.withSessionDo(session => session.execute("DROP TABLE IF EXISTS books_ks.books;"))
cdbConnector.withSessionDo(session => session.execute("CREATE TABLE IF NOT EXISTS books_ks.books(book_id TEXT,book_author TEXT, book_name TEXT,book_pub_year INT,book_price FLOAT, PRIMARY KEY(book_id,book_pub_year)) WITH cosmosdb_provisioned_throughput=4000 , WITH default_time_to_live=630720000;"))
//Create RDD
val booksRDD = sc.parallelize(Seq(
("b00001", "Arthur Conan Doyle", "A study in scarlet", 1887),
("b00023", "Arthur Conan Doyle", "A sign of four", 1890),
("b01001", "Arthur Conan Doyle", "The adventures of Sherlock Holmes", 1892),
("b00501", "Arthur Conan Doyle", "The memoirs of Sherlock Holmes", 1893),
("b00300", "Arthur Conan Doyle", "The hounds of Baskerville", 1901)
))
//Review
booksRDD.take(2).foreach(println)
Kommentar
Funktionen Skapa om den inte finns stöds ännu inte.
Spara till Azure Cosmos DB för Apache Cassandra
När du sparar data till API för Cassandra kan du också ange inställningar för time-to-live- och konsekvensprinciper enligt följande exempel:
import com.datastax.spark.connector.writer._
import com.datastax.oss.driver.api.core.ConsistencyLevel
//Persist
booksRDD.saveToCassandra("books_ks", "books", SomeColumns("book_id", "book_author", "book_name", "book_pub_year"),writeConf = WriteConf(ttl = TTLOption.constant(900000),consistencyLevel = ConsistencyLevel.ALL))
Verifiera i cqlsh
use books_ks;
select * from books;
Nästa steg
När du har infogat data i tabellen Azure Cosmos DB för Apache Cassandra fortsätter du till följande artiklar för att utföra andra åtgärder på data som lagras i Azure Cosmos DB för Apache Cassandra: