microsoftml.rx_predict: оценка по модели машинного обучения Майкрософт
Использование
microsoftml.rx_predict(model,
data: typing.Union[revoscalepy.datasource.RxDataSource.RxDataSource,
pandas.core.frame.DataFrame],
output_data: typing.Union[revoscalepy.datasource.RxDataSource.RxDataSource,
str] = None, write_model_vars: bool = False,
extra_vars_to_write: list = None, suffix: str = None,
overwrite: bool = False, data_threads: int = None,
blocks_per_read: int = None, report_progress: int = None,
verbose: int = 1,
compute_context: revoscalepy.computecontext.RxComputeContext.RxComputeContext = None,
**kargs)
Описание
Отчеты по оценкам для каждого экземпляра выводятся в кадре данных или в источнике данных revoscalepy с помощью обученной модели Машинного обучения Майкрософт с источником arevoscalepydata.
Сведения
По умолчанию в выходные данные включаются следующие элементы: оценка по трем переменным для двоичных классификаторов: PredictedLabel, Score и Probability; оценка для oneClassSvm и классификаторов регрессии; PredictedLabel для классификаторов с несколькими классами, а также переменная для каждой категории, перед которой идет оценка.
Аргументы
для базы данных модели
Объект сведений о модели, возвращаемый из модели microsoftml.
Например, объект, возвращаемый из rx_fast_trees
или rx_logistic_regression
.
.
Объект источника данных revoscalepy, кадр данных или путь к файлу .xdf
.
output_data
Выходной текст или имя XDF-файла или источника данных RxDataSource
с возможностями записи, в котором необходимо сохранить преобразованные данные. Если указано значение None, то возвращается кадр данных. Значение по умолчанию — None.
write_model_vars
Если указано значение True
, переменные в модели записываются в набор выходных данных в дополнение к переменным оценки.
Если переменные из входного набора данных преобразуются в модель, то в модель также включаются и преобразованные переменные. Значение по умолчанию — False
.
extra_vars_to_write
None
или символьный вектор имен дополнительных переменных из входных данных для включения в output_data
. Если write_model_vars
имеет значение True
, также включаются переменные модели. Значение по умолчанию — None
.
суффикс
Строка символов, указывающая суффикс для добавления к созданным переменным оценки, или None
, если суффикс отсутствует. Значение по умолчанию — None
.
перезапись
Если указано значение True
, существующий output_data
перезаписывается; если указано значение False
, существующий output_data
не перезаписывается. Значение по умолчанию — False
.
data_threads
Целое число, указывающее требуемую степень параллелизма в конвейере данных. Если указано значение None, количество используемых потоков определяется внутренне. Значение по умолчанию — None.
blocks_per_read
Указывает количество считываемых блоков для каждого фрагмента данных, считываемого из источника данных.
report_progress
Целочисленное значение, указывающее уровень информирования по ходу обработки строки:
0
— информирование не осуществляется.1
— выводится и обновляется число обработанных записей.2
— выводятся данные об обработанных записях и времени обработки.3
— выводятся данные об обработанных записях и все данные о времени обработки.
Значение по умолчанию — 1
.
verbose
Целочисленное значение, указывающее требуемый объем выходных данных.
Если задано значение 0
, при вычислениях подробные выходные данные не выводятся. Целочисленные значения из диапазона от 1
до 4
позволяют увеличить объем информации.
Значение по умолчанию — 1
.
compute_context
Задает контекст, в котором выполняются вычисления, указанные с помощью допустимого значения revoscalepy.RxComputeContext. Сейчас поддерживаются локальные контексты и контексты вычислений revoscalepy.RxInSqlServer.
kargs
Дополнительные аргументы, отправляемые в подсистему вычислений.
Возвращаемое значение
Кадр данных или объект revoscalepy.RxDataSource, представляющий созданные выходные данные. По умолчанию выходные данные оценки двоичных классификаторов включают три переменные: PredictedLabel
, Score
и Probability
; rx_oneclass_svm
и регрессия включают одну переменную: Score
, а классификаторы с несколькими классами включают PredictedLabel
и переменную для каждой категории, перед которой идет Score
. Если указан suffix
, он добавляется в конец этих имен выходных переменных.
См. также
rx_featurize
, revoscalepy.rx_data_step, revoscalepy.rx_import.
Пример двоичной классификации
'''
Binary Classification.
'''
import numpy
import pandas
from microsoftml import rx_fast_linear, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset
infert = get_dataset("infert")
import sklearn
if sklearn.__version__ < "0.18":
from sklearn.cross_validation import train_test_split
else:
from sklearn.model_selection import train_test_split
infertdf = infert.as_df()
infertdf["isCase"] = infertdf.case == 1
data_train, data_test, y_train, y_test = train_test_split(infertdf, infertdf.isCase)
forest_model = rx_fast_linear(
formula=" isCase ~ age + parity + education + spontaneous + induced ",
data=data_train)
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(forest_model, data=data_test,
extra_vars_to_write=["isCase", "Score"])
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))
Выходные данные:
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 186, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 186, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Using 2 threads to train.
Automatically choosing a check frequency of 2.
Auto-tuning parameters: maxIterations = 8064.
Auto-tuning parameters: L2 = 2.666837E-05.
Auto-tuning parameters: L1Threshold (L1/L2) = 0.
Using best model from iteration 590.
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.6058289
Elapsed time: 00:00:00.0084728
Beginning processing data.
Rows Read: 62, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0302359
Finished writing 62 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds
isCase PredictedLabel Score Probability
0 False True 0.576775 0.640325
1 False False -2.929549 0.050712
2 True False -2.370090 0.085482
3 False False -1.700105 0.154452
4 False False -0.110981 0.472283
Пример регрессии
'''
Regression.
'''
import numpy
import pandas
from microsoftml import rx_fast_trees, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset
airquality = get_dataset("airquality")
import sklearn
if sklearn.__version__ < "0.18":
from sklearn.cross_validation import train_test_split
else:
from sklearn.model_selection import train_test_split
airquality = airquality.as_df()
######################################################################
# Estimate a regression fast forest
# Use the built-in data set 'airquality' to create test and train data
df = airquality[airquality.Ozone.notnull()]
df["Ozone"] = df.Ozone.astype(float)
data_train, data_test, y_train, y_test = train_test_split(df, df.Ozone)
airFormula = " Ozone ~ Solar_R + Wind + Temp "
# Regression Fast Forest for train data
ff_reg = rx_fast_trees(airFormula, method="regression", data=data_train)
# Put score and model variables in data frame
score_df = rx_predict(ff_reg, data=data_test, write_model_vars=True)
print(score_df.head())
# Plot actual versus predicted values with smoothed line
# Supported in the next version.
# rx_line_plot(" Score ~ Ozone ", type=["p", "smooth"], data=score_df)
Выходные данные:
'unbalanced_sets' ignored for method 'regression'
Not adding a normalizer.
Making per-feature arrays
Changing data from row-wise to column-wise
Beginning processing data.
Rows Read: 87, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Warning: Skipped 4 instances with missing features during training
Processed 83 instances
Binning and forming Feature objects
Reserved memory for tree learner: 22620 bytes
Starting to train ...
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.0390764
Elapsed time: 00:00:00.0080750
Beginning processing data.
Rows Read: 29, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0221875
Finished writing 29 rows.
Writing completed.
Solar_R Wind Temp Score
0 290.0 9.2 66.0 33.195541
1 259.0 15.5 77.0 20.906796
2 276.0 5.1 88.0 76.594643
3 139.0 10.3 81.0 31.668842
4 236.0 14.9 81.0 43.590839