Поделиться через


PriorTrainer Класс

Определение

Прогнозирование IEstimator<TTransformer> целевого объекта с помощью модели двоичной классификации.

public sealed class PriorTrainer : Microsoft.ML.IEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Trainers.PriorModelParameters>>, Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Trainers.PriorModelParameters>,Microsoft.ML.Trainers.PriorModelParameters>
type PriorTrainer = class
    interface ITrainerEstimator<BinaryPredictionTransformer<PriorModelParameters>, PriorModelParameters>
    interface IEstimator<BinaryPredictionTransformer<PriorModelParameters>>
Public NotInheritable Class PriorTrainer
Implements IEstimator(Of BinaryPredictionTransformer(Of PriorModelParameters)), ITrainerEstimator(Of BinaryPredictionTransformer(Of PriorModelParameters), PriorModelParameters)
Наследование
PriorTrainer
Реализации

Комментарии

Чтобы создать этот обучатель, используйте параметр Prior

Входные и выходные столбцы

Входные данные столбца меток должны иметь тип Boolean. Входные признаки данных столбцов должны быть вектором известного Singleразмера .

Этот алгоритм обучения выводит следующие столбцы:

Имя выходного столбца Тип столбца Описание
Score Single Несвязанная оценка, вычисляемая моделью.
PredictedLabel Boolean Прогнозируемая метка, зависящая от знака оценки. Отрицательная оценка соответствует значению false, а положительная — значению true.
Probability Single Вероятность, вычисляемая путем калибровки оценки истинности в качестве метки. Значение вероятности находится в диапазоне [0, 1].

Характеристики тренера

Задача машинного обучения Двоичная классификация
Требуется ли нормализация? Нет
Требуется ли кэширование? Нет
Требуется NuGet в дополнение к Microsoft.ML Нет
Экспортируемый в ONNX Да

Сведения об алгоритме обучения

Сведения о предыдущем распределении для меток класса 0/1 и выходных данных.

Ссылки на примеры использования см. в разделе "См. также".

Свойства

Info

Вспомогательная информация о тренере с точки зрения его возможностей и требований.

Методы

Fit(IDataView)

Тренирует и возвращает .BinaryPredictionTransformer<TModel>

GetOutputSchema(SchemaShape)

Возвращает схему SchemaShape , которая будет производиться преобразователем. Используется для распространения и проверки схемы в конвейере.

Методы расширения

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Добавьте "контрольную точку кэширования" в цепочку оценщика. Это гарантирует, что подчиненные оценщики будут обучены на основе кэшированных данных. Рекомендуется использовать контрольную точку кэширования перед обучением, которые принимают несколько данных.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Учитывая оценщик, верните объект-оболочку, который будет вызывать делегат один раз Fit(IDataView) . Часто важно, чтобы оценщик возвращал сведения о том, что было положено, поэтому Fit(IDataView) метод возвращает специально типизированный объект, а не просто общий ITransformer. Однако в то же время часто IEstimator<TTransformer> формируются в конвейеры со многими объектами, поэтому нам может потребоваться создать цепочку оценщиков, где EstimatorChain<TLastTransformer> оценщик, для которого мы хотим получить преобразователь, похоронен где-то в этой цепочке. В этом сценарии мы можем подключить делегат, который будет вызываться после вызова соответствия.

Применяется к

См. также раздел