LightGbmRankingModelParameters Класс
Определение
Важно!
Некоторые сведения относятся к предварительной версии продукта, в которую до выпуска могут быть внесены существенные изменения. Майкрософт не предоставляет никаких гарантий, явных или подразумеваемых, относительно приведенных здесь сведений.
Параметры модели для LightGbmRankingTrainer.
public sealed class LightGbmRankingModelParameters : Microsoft.ML.Trainers.FastTree.TreeEnsembleModelParametersBasedOnRegressionTree
type LightGbmRankingModelParameters = class
inherit TreeEnsembleModelParametersBasedOnRegressionTree
Public NotInheritable Class LightGbmRankingModelParameters
Inherits TreeEnsembleModelParametersBasedOnRegressionTree
- Наследование
-
LightGbmRankingModelParameters
Свойства
TrainedTreeEnsemble |
Ансамбль деревьев, предоставляемых пользователям. Это оболочка на входе |
Методы
GetFeatureWeights(VBuffer<Single>) |
Получение совокупного прироста распределения для каждой функции во всех деревьях. (Унаследовано от TreeEnsembleModelParameters) |
Явные реализации интерфейса
ICalculateFeatureContribution.FeatureContributionCalculator |
Используется для определения вклада каждой функции в оценку примера по FeatureContributionCalculatingTransformer. Вычисление вклада признаков по сути состоит в определении того, какие разбиения в дереве оказывают наибольшее влияние на окончательную оценку и присваивают значение влияния на признаки, определяющие разделение. Точнее, вклад функции равен изменению оценки, созданной путем изучения противоположного поддеревого дерева при каждом обнаружении узла принятия решений для данной функции. Рассмотрим простой случай с одним деревом принятия решений с узлом принятия решений для двоичной функции F1. Учитывая пример с функцией F1, равной true, можно вычислить оценку, полученную при выборе поддеревого дерева, соответствующего признаку F1, равному false, сохраняя константу других функций. Вклад функции F1 для данного примера заключается в разнице между исходной оценкой и оценкой, полученной путем принятия противоположного решения на узле, соответствующем функции F1. Этот алгоритм естественным образом распространяется на модели с множеством деревьев принятия решений. (Унаследовано от TreeEnsembleModelParameters) |
ICanSaveModel.Save(ModelSaveContext) |
Параметры модели для LightGbmRankingTrainer. (Унаследовано от ModelParametersBase<TOutput>) |