Поделиться через


TimeSeriesCatalog.DetectAnomalyBySrCnn Метод

Определение

Создание SrCnnAnomalyEstimator, которое обнаруживает аномалии времени с помощью алгоритма SRCNN.

public static Microsoft.ML.Transforms.TimeSeries.SrCnnAnomalyEstimator DetectAnomalyBySrCnn (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int windowSize = 64, int backAddWindowSize = 5, int lookaheadWindowSize = 5, int averagingWindowSize = 3, int judgementWindowSize = 21, double threshold = 0.3);
public static Microsoft.ML.Transforms.TimeSeries.SrCnnAnomalyEstimator DetectAnomalyBySrCnn (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int windowSize = 64, int backAddWindowSize = 5, int lookaheadWindowSize = 5, int averageingWindowSize = 3, int judgementWindowSize = 21, double threshold = 0.3);
static member DetectAnomalyBySrCnn : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * int * double -> Microsoft.ML.Transforms.TimeSeries.SrCnnAnomalyEstimator
static member DetectAnomalyBySrCnn : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * int * double -> Microsoft.ML.Transforms.TimeSeries.SrCnnAnomalyEstimator
<Extension()>
Public Function DetectAnomalyBySrCnn (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, Optional windowSize As Integer = 64, Optional backAddWindowSize As Integer = 5, Optional lookaheadWindowSize As Integer = 5, Optional averagingWindowSize As Integer = 3, Optional judgementWindowSize As Integer = 21, Optional threshold As Double = 0.3) As SrCnnAnomalyEstimator
<Extension()>
Public Function DetectAnomalyBySrCnn (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, Optional windowSize As Integer = 64, Optional backAddWindowSize As Integer = 5, Optional lookaheadWindowSize As Integer = 5, Optional averageingWindowSize As Integer = 3, Optional judgementWindowSize As Integer = 21, Optional threshold As Double = 0.3) As SrCnnAnomalyEstimator

Параметры

catalog
TransformsCatalog

Каталог преобразования.

outputColumnName
String

Имя столбца, полученного из преобразования inputColumnName. Данные столбца являются вектором Double. Вектор содержит три элемента: оповещение (1 означает аномалию, а 0 означает нормальную), необработанную оценку и величину оповещений.

inputColumnName
String

Имя преобразуемого столбца. Данные столбца должны быть Single.

windowSize
Int32

Размер скользящего окна для вычислений остаточного остатка.

backAddWindowSize
Int32

Количество точек, добавляемых в окно обучения. Значение по умолчанию не превышает windowSizeзначения по умолчанию.

lookaheadWindowSize
Int32

Количество извечивых точек, используемых в прогнозе. Значение по умолчанию не превышает windowSizeзначения по умолчанию.

averagingWindowSizeaverageingWindowSize
Int32

Размер скользящего окна для создания карты сальности для ряда. Значение по умолчанию не превышает windowSizeзначения по умолчанию.

judgementWindowSize
Int32

Размер скользящего окна для вычисления оценки аномалий для каждой точки данных. Не больше windowSize.

threshold
Double

Пороговое значение, определяющее аномалию, оценка больше порога считается аномалией. Должен находиться в (0,1)

Возвращаемое значение

Примеры

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms.TimeSeries;

namespace Samples.Dynamic
{
    public static class DetectAnomalyBySrCnn
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). The estimator is applied then to
        // identify spiking points in the series.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with an anomaly
            var data = new List<TimeSeriesData>();
            for (int index = 0; index < 20; index++)
            {
                data.Add(new TimeSeriesData(5));
            }
            data.Add(new TimeSeriesData(10));
            for (int index = 0; index < 5; index++)
            {
                data.Add(new TimeSeriesData(5));
            }

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup the estimator arguments
            string outputColumnName = nameof(SrCnnAnomalyDetection.Prediction);
            string inputColumnName = nameof(TimeSeriesData.Value);

            // The transformed model.
            ITransformer model = ml.Transforms.DetectAnomalyBySrCnn(
                outputColumnName, inputColumnName, 16, 5, 5, 3, 8, 0.35).Fit(
                dataView);

            // Create a time series prediction engine from the model.
            var engine = model.CreateTimeSeriesEngine<TimeSeriesData,
                SrCnnAnomalyDetection>(ml);

            Console.WriteLine($"{outputColumnName} column obtained post-" +
                $"transformation.");

            Console.WriteLine("Data\tAlert\tScore\tMag");

            // Prediction column obtained post-transformation.
            // Data	Alert	Score	Mag

            // Create non-anomalous data and check for anomaly.
            for (int index = 0; index < 20; index++)
            {
                // Anomaly detection.
                PrintPrediction(5, engine.Predict(new TimeSeriesData(5)));
            }

            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.00    0.00
            //5   0   0.03    0.18
            //5   0   0.03    0.18
            //5   0   0.03    0.18
            //5   0   0.03    0.18
            //5   0   0.03    0.18

            // Anomaly.
            PrintPrediction(10, engine.Predict(new TimeSeriesData(10)));

            //10	1	0.47	0.93    <-- alert is on, predicted anomaly

            // Checkpoint the model.
            var modelPath = "temp.zip";
            engine.CheckPoint(ml, modelPath);

            // Load the model.
            using (var file = File.OpenRead(modelPath))
                model = ml.Model.Load(file, out DataViewSchema schema);

            for (int index = 0; index < 5; index++)
            {
                // Anomaly detection.
                PrintPrediction(5, engine.Predict(new TimeSeriesData(5)));
            }

            //5   0   0.31    0.50
            //5   0   0.05    0.30
            //5   0   0.01    0.23
            //5   0   0.00    0.21
            //5   0   0.01    0.25
        }

        private static void PrintPrediction(float value, SrCnnAnomalyDetection
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value, prediction
            .Prediction[0], prediction.Prediction[1], prediction.Prediction[2]);

        private class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }

        private class SrCnnAnomalyDetection
        {
            [VectorType(3)]
            public double[] Prediction { get; set; }
        }
    }
}

Применяется к