Поделиться через


ImageEstimatorsCatalog.ConvertToImage Метод

Определение

Создайте VectorToImageConvertingEstimatorобъект , который создает изображение из данных из столбца, указанного в , в inputColumnName новый столбец: outputColumnName.

public static Microsoft.ML.Transforms.Image.VectorToImageConvertingEstimator ConvertToImage (this Microsoft.ML.TransformsCatalog catalog, int imageHeight, int imageWidth, string outputColumnName, string inputColumnName = default, Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator.ColorBits colorsPresent = Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator+ColorBits.Rgb, Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator.ColorsOrder orderOfColors = Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator+ColorsOrder.ARGB, bool interleavedColors = false, float scaleImage = 1, float offsetImage = 0, int defaultAlpha = 255, int defaultRed = 0, int defaultGreen = 0, int defaultBlue = 0);
static member ConvertToImage : Microsoft.ML.TransformsCatalog * int * int * string * string * Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator.ColorBits * Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator.ColorsOrder * bool * single * single * int * int * int * int -> Microsoft.ML.Transforms.Image.VectorToImageConvertingEstimator
<Extension()>
Public Function ConvertToImage (catalog As TransformsCatalog, imageHeight As Integer, imageWidth As Integer, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional colorsPresent As ImagePixelExtractingEstimator.ColorBits = Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator+ColorBits.Rgb, Optional orderOfColors As ImagePixelExtractingEstimator.ColorsOrder = Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator+ColorsOrder.ARGB, Optional interleavedColors As Boolean = false, Optional scaleImage As Single = 1, Optional offsetImage As Single = 0, Optional defaultAlpha As Integer = 255, Optional defaultRed As Integer = 0, Optional defaultGreen As Integer = 0, Optional defaultBlue As Integer = 0) As VectorToImageConvertingEstimator

Параметры

catalog
TransformsCatalog

Каталог преобразования.

imageHeight
Int32

Высота выходных изображений.

imageWidth
Int32

Ширина выходных изображений.

outputColumnName
String

Имя столбца, полученного в результате преобразования inputColumnName. Тип данных этого столбца будет иметь значение MLImage.

inputColumnName
String

Имя столбца с данными, которые необходимо преобразовать в изображение. Этот оценщик работает над вектором известного Singleразмера , Double и Byte.

colorsPresent
ImagePixelExtractingEstimator.ColorBits

Указывает, какие ImagePixelExtractingEstimator.ColorBits векторы входных пикселей присутствуют. Порядок цветов указывается в orderOfColors.

orderOfColors
ImagePixelExtractingEstimator.ColorsOrder

Порядок, в котором цвета представлены во входном векторе.

interleavedColors
Boolean

Являются ли пиксели чередуются, то есть они находятся в orderOfColors порядке или разделены в плоской форме: все значения одного цвета для всех пикселей, затем все значения для другого цвета и т. д.

scaleImage
Single

Значения масштабируются по этому значению перед преобразованием в пиксели. Применяется к значению вектора перед offsetImage.

offsetImage
Single

Смещение вычитается перед преобразованием значений в пиксели. Применяется к значению вектора после scaleImage.

defaultAlpha
Int32

Значение по умолчанию для альфа-цвета будет переопределено, если colorsPresent содержит Alpha.

defaultRed
Int32

Значение по умолчанию для красного цвета будет переопределено, если colorsPresent содержит Red.

defaultGreen
Int32

Значение по умолчанию для зеленого цвета будет переопределено, если colorsPresent содержит Green.

defaultBlue
Int32

Значение по умолчанию для синего цвета будет переопределено, если colorsPresent содержит Blue.

Возвращаемое значение

Примеры

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class ConvertToImage
    {
        private const int imageHeight = 224;
        private const int imageWidth = 224;
        private const int numberOfChannels = 3;
        private const int inputSize = imageHeight * imageWidth * numberOfChannels;

        // Sample that shows how an input array (of doubles) can be used to interop
        // with image related estimators in ML.NET.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(4);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var data = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Image loading pipeline.
            var pipeline = mlContext.Transforms.ConvertToImage(imageHeight,
                imageWidth, "Image", "Features")
                .Append(mlContext.Transforms.ExtractPixels("Pixels", "Image"));

            var transformedData = pipeline.Fit(data).Transform(data);

            // Preview the transformedData.
            PrintColumns(transformedData);

            // Features                 Image                    Pixels
            // 185,209,196,142,52...    {Width=224, Height=224}  185,209,196,142,52...
            // 182,235,84,23,87...      {Width=224, Height=224}  182,235,84,23,87...
            // 192,214,247,22,38...     {Width=224, Height=224}  192,214,247,22,38...
            // 242,161,141,223,192...   {Width=224, Height=224}  242,161,141,223,192...
        }

        private static void PrintColumns(IDataView transformedData)
        {
            Console.WriteLine("{0, -25} {1, -25} {2, -25}", "Features", "Image",
                "Pixels");

            using (var cursor = transformedData.GetRowCursor(transformedData
                .Schema))
            {
                // Note that it is best to get the getters and values *before*
                // iteration, so as to facilitate buffer sharing (if applicable), and
                // column -type validation once, rather than many times.
                VBuffer<float> features = default;
                VBuffer<float> pixels = default;
                MLImage imageObject = null;

                var featuresGetter = cursor.GetGetter<VBuffer<float>>(cursor.Schema[
                    "Features"]);

                var pixelsGetter = cursor.GetGetter<VBuffer<float>>(cursor.Schema[
                    "Pixels"]);

                var imageGetter = cursor.GetGetter<MLImage>(cursor.Schema["Image"]);
                while (cursor.MoveNext())
                {

                    featuresGetter(ref features);
                    pixelsGetter(ref pixels);
                    imageGetter(ref imageObject);

                    Console.WriteLine("{0, -25} {1, -25} {2, -25}", string.Join(",",
                        features.DenseValues().Take(5)) + "...",
                        $"Width={imageObject.Width}, Height={imageObject.Height}",
                        string.Join(",", pixels.DenseValues().Take(5)) + "...");
                }

                // Dispose the image.
                imageObject.Dispose();
            }
        }

        private class DataPoint
        {
            [VectorType(inputSize)]
            public float[] Features { get; set; }
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)
        {
            var random = new Random(seed);

            for (int i = 0; i < count; i++)
                yield return new DataPoint
                {
                    Features = Enumerable.Repeat(0,
                    inputSize).Select(x => (float)random.Next(0, 256)).ToArray()
                };
        }
    }
}

Применяется к