Краткое руководство. Обнаружение персональных данных
Примечание.
В этом кратком руководстве рассматривается только обнаружение личных сведений в документах. Дополнительные сведения об обнаружении личных сведений в беседах см. в разделе Обнаружение и редактирование личных сведений в беседах.
Справочная документация | по дополнительным примерам | пакета (NuGet) | Исходный код библиотеки
В этом кратком руководстве описано, как создать приложение для обнаружения личных сведений с использованием клиентской библиотеки для .NET. В следующем примере создается приложение C#, которое может определять распознанные конфиденциальные данные в тексте.
Совет
Вы можете использовать Azure AI Foundry , чтобы попытаться сводные данные без необходимости писать код.
Необходимые компоненты
- Подписка Azure — создайте бесплатную учетную запись.
- После получения подписки Azure создайте ресурс служб ИИ.
- Интегрированная среда разработки Visual Studio.
Установка
Создание переменной среды
Приложение должно пройти проверку подлинности для отправки запросов API. Для рабочей среды используйте безопасный способ хранения и доступа к учетным данным,. В этом примере учетные данные записываются в переменные среды на локальном компьютере, на котором запущено приложение.
Чтобы задать переменную среды для ключа ресурса языка, откройте окно консоли и следуйте инструкциям в вашей операционной системе и среде разработки.
- Чтобы задать
LANGUAGE_KEY
переменную среды, заменитеyour-key
одним из ключей ресурса. - Чтобы задать переменную среды, замените
your-endpoint
конечнойLANGUAGE_ENDPOINT
точкой ресурса.
Внимание
Если вы используете ключ API, сохраните его в другом месте, например в Azure Key Vault. Не включайте ключ API непосредственно в код и никогда не публикуйте его.
Дополнительные сведения о безопасности служб ИИ см. в статье "Проверка подлинности запросов к службам ИИ Azure".
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Примечание.
Если вам нужно получить доступ только к переменным среды в текущей работающей консоли, можно задать переменную set
среды вместо setx
.
После добавления переменных среды может потребоваться перезапустить все запущенные программы, которые потребуются для чтения переменных среды, включая окно консоли. Например, если вы используете Visual Studio в качестве редактора, перезапустите Visual Studio перед запуском примера.
Создание приложения .NET Core
С помощью интегрированной среды разработки Visual Studio создайте консольное приложение .NET Core. При этом создается проект Hello World с одним исходным файлом C#: program.cs.
Установите клиентскую библиотеку, щелкнув правой кнопкой мыши решение в обозревателе решений и выбрав Управление пакетами NuGet. В открывшемся диспетчере пакетов выберите Просмотр и выполните поиск по запросу Azure.AI.TextAnalytics
. Выберите версию 5.2.0
, а затем Установить. Вы также можете использовать консоль диспетчера пакетов.
Пример кода
Скопируйте следующий код в файл program.cs и запустите код.
using Azure;
using System;
using Azure.AI.TextAnalytics;
namespace Example
{
class Program
{
// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
static string languageKey = Environment.GetEnvironmentVariable("LANGUAGE_KEY");
static string languageEndpoint = Environment.GetEnvironmentVariable("LANGUAGE_ENDPOINT");
private static readonly AzureKeyCredential credentials = new AzureKeyCredential(languageKey);
private static readonly Uri endpoint = new Uri(languageEndpoint);
// Example method for detecting sensitive information (PII) from text
static void RecognizePIIExample(TextAnalyticsClient client)
{
string document = "Call our office at 312-555-1234, or send an email to support@contoso.com.";
PiiEntityCollection entities = client.RecognizePiiEntities(document).Value;
Console.WriteLine($"Redacted Text: {entities.RedactedText}");
if (entities.Count > 0)
{
Console.WriteLine($"Recognized {entities.Count} PII entit{(entities.Count > 1 ? "ies" : "y")}:");
foreach (PiiEntity entity in entities)
{
Console.WriteLine($"Text: {entity.Text}, Category: {entity.Category}, SubCategory: {entity.SubCategory}, Confidence score: {entity.ConfidenceScore}");
}
}
else
{
Console.WriteLine("No entities were found.");
}
}
static void Main(string[] args)
{
var client = new TextAnalyticsClient(endpoint, credentials);
RecognizePIIExample(client);
Console.Write("Press any key to exit.");
Console.ReadKey();
}
}
}
Выходные данные
Redacted Text: Call our office at ************, or send an email to *******************.
Recognized 2 PII entities:
Text: 312-555-1234, Category: PhoneNumber, SubCategory: , Confidence score: 0.8
Text: support@contoso.com, Category: Email, SubCategory: , Confidence score: 0.8
Справочная документация | по дополнительным примерам | пакета (Maven) | Library source code
В этом кратком руководстве описано, как создать приложение для обнаружения личных сведений с использованием клиентской библиотеки для Java. В следующем примере вы создадите приложение Java, которое может определять распознанные конфиденциальные данные в тексте.
Совет
Вы можете использовать Azure AI Foundry , чтобы попытаться сводные данные без необходимости писать код.
Необходимые компоненты
- Подписка Azure — создайте бесплатную учетную запись.
- После получения подписки Azure создайте ресурс служб ИИ.
- Пакет разработчиков Java (JDK) версии 8 или более поздней.
Установка
Создание переменной среды
Приложение должно пройти проверку подлинности для отправки запросов API. Для рабочей среды используйте безопасный способ хранения и доступа к учетным данным,. В этом примере учетные данные записываются в переменные среды на локальном компьютере, на котором запущено приложение.
Чтобы задать переменную среды для ключа ресурса языка, откройте окно консоли и следуйте инструкциям в вашей операционной системе и среде разработки.
- Чтобы задать
LANGUAGE_KEY
переменную среды, заменитеyour-key
одним из ключей ресурса. - Чтобы задать переменную среды, замените
your-endpoint
конечнойLANGUAGE_ENDPOINT
точкой ресурса.
Внимание
Если вы используете ключ API, сохраните его в другом месте, например в Azure Key Vault. Не включайте ключ API непосредственно в код и никогда не публикуйте его.
Дополнительные сведения о безопасности служб ИИ см. в статье "Проверка подлинности запросов к службам ИИ Azure".
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Примечание.
Если вам нужно получить доступ только к переменным среды в текущей работающей консоли, можно задать переменную set
среды вместо setx
.
После добавления переменных среды может потребоваться перезапустить все запущенные программы, которые потребуются для чтения переменных среды, включая окно консоли. Например, если вы используете Visual Studio в качестве редактора, перезапустите Visual Studio перед запуском примера.
Добавление клиентской библиотеки
Создайте проект Maven в предпочтительной среде разработки или IDE. Потом добавьте следующую зависимость в файл pom.xml проекта. Синтаксис реализации для других средств сборки можно найти в Интернете.
<dependencies>
<dependency>
<groupId>com.azure</groupId>
<artifactId>azure-ai-textanalytics</artifactId>
<version>5.2.0</version>
</dependency>
</dependencies>
Пример кода
Создайте файл Java с именем Example.java
. Откройте файл и скопируйте приведенный ниже код. Теперь выполните код.
import com.azure.core.credential.AzureKeyCredential;
import com.azure.ai.textanalytics.models.*;
import com.azure.ai.textanalytics.TextAnalyticsClientBuilder;
import com.azure.ai.textanalytics.TextAnalyticsClient;
public class Example {
// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
private static String languageKey = System.getenv("LANGUAGE_KEY");
private static String languageEndpoint = System.getenv("LANGUAGE_ENDPOINT");
public static void main(String[] args) {
TextAnalyticsClient client = authenticateClient(languageKey, languageEndpoint);
recognizePiiEntitiesExample(client);
}
// Method to authenticate the client object with your key and endpoint
static TextAnalyticsClient authenticateClient(String key, String endpoint) {
return new TextAnalyticsClientBuilder()
.credential(new AzureKeyCredential(key))
.endpoint(endpoint)
.buildClient();
}
// Example method for detecting sensitive information (PII) from text
static void recognizePiiEntitiesExample(TextAnalyticsClient client)
{
// The text that need be analyzed.
String document = "My SSN is 859-98-0987";
PiiEntityCollection piiEntityCollection = client.recognizePiiEntities(document);
System.out.printf("Redacted Text: %s%n", piiEntityCollection.getRedactedText());
piiEntityCollection.forEach(entity -> System.out.printf(
"Recognized Personally Identifiable Information entity: %s, entity category: %s, entity subcategory: %s,"
+ " confidence score: %f.%n",
entity.getText(), entity.getCategory(), entity.getSubcategory(), entity.getConfidenceScore()));
}
}
Выходные данные
Redacted Text: My SSN is ***********
Recognized Personally Identifiable Information entity: 859-98-0987, entity category: USSocialSecurityNumber, entity subcategory: null, confidence score: 0.650000.
Справочная документация | по дополнительным примерам | пакета (npm) | Исходный код библиотеки
В этом кратком руководстве описано, как создать приложение для обнаружения личных сведений с использованием клиентской библиотеки для Node.js. В следующем примере создается приложение JavaScript, которое может определять распознанные конфиденциальные данные в тексте.
Необходимые компоненты
- Подписка Azure — создайте бесплатную учетную запись.
- После получения подписки Azure создайте ресурс служб ИИ.
- Node.js версии 14 LTS или выше
Установка
Создание переменной среды
Приложение должно пройти проверку подлинности для отправки запросов API. Для рабочей среды используйте безопасный способ хранения и доступа к учетным данным,. В этом примере учетные данные записываются в переменные среды на локальном компьютере, на котором запущено приложение.
Чтобы задать переменную среды для ключа ресурса языка, откройте окно консоли и следуйте инструкциям в вашей операционной системе и среде разработки.
- Чтобы задать
LANGUAGE_KEY
переменную среды, заменитеyour-key
одним из ключей ресурса. - Чтобы задать переменную среды, замените
your-endpoint
конечнойLANGUAGE_ENDPOINT
точкой ресурса.
Внимание
Если вы используете ключ API, сохраните его в другом месте, например в Azure Key Vault. Не включайте ключ API непосредственно в код и никогда не публикуйте его.
Дополнительные сведения о безопасности служб ИИ см. в статье "Проверка подлинности запросов к службам ИИ Azure".
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Примечание.
Если вам нужно получить доступ только к переменным среды в текущей работающей консоли, можно задать переменную set
среды вместо setx
.
После добавления переменных среды может потребоваться перезапустить все запущенные программы, которые потребуются для чтения переменных среды, включая окно консоли. Например, если вы используете Visual Studio в качестве редактора, перезапустите Visual Studio перед запуском примера.
Создание нового приложения Node.js
В окне консоли (например, cmd, PowerShell или Bash) создайте новый каталог для приложения и перейдите в него.
mkdir myapp
cd myapp
Выполните команду npm init
, чтобы создать приложение узла с помощью файла package.json
.
npm init
Установка клиентской библиотеки
Установите пакет npm:
npm install @azure/ai-text-analytics
Пример кода
Откройте файл и скопируйте приведенный ниже код. Теперь выполните код.
"use strict";
const { TextAnalyticsClient, AzureKeyCredential } = require("@azure/ai-text-analytics");
// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
const key = process.env.LANGUAGE_KEY;
const endpoint = process.env.LANGUAGE_ENDPOINT;
//an example document for pii recognition
const documents = [ "The employee's phone number is (555) 555-5555." ];
async function main() {
console.log(`PII recognition sample`);
const client = new TextAnalyticsClient(endpoint, new AzureKeyCredential(key));
const documents = ["My phone number is 555-555-5555"];
const [result] = await client.analyze("PiiEntityRecognition", documents, "en");
if (!result.error) {
console.log(`Redacted text: "${result.redactedText}"`);
console.log("Pii Entities: ");
for (const entity of result.entities) {
console.log(`\t- "${entity.text}" of type ${entity.category}`);
}
}
}
main().catch((err) => {
console.error("The sample encountered an error:", err);
});
Выходные данные
PII recognition sample
Redacted text: "My phone number is ************"
Pii Entities:
- "555-555-5555" of type PhoneNumber
Справочная документация | по дополнительным примерам | кода пакета (PyPi)Library |
В этом кратком руководстве описано, как создать приложение для обнаружения личных сведений с использованием клиентской библиотеки для Python. В следующем примере показано, как создать приложение Python, которое может определять распознанную конфиденциальную информацию в тексте.
Необходимые компоненты
- Подписка Azure — создайте бесплатную учетную запись.
- После получения подписки Azure создайте ресурс служб ИИ.
- Python 3.8 или более поздней версии
Установка
Создание переменной среды
Приложение должно пройти проверку подлинности для отправки запросов API. Для рабочей среды используйте безопасный способ хранения и доступа к учетным данным,. В этом примере учетные данные записываются в переменные среды на локальном компьютере, на котором запущено приложение.
Чтобы задать переменную среды для ключа ресурса языка, откройте окно консоли и следуйте инструкциям в вашей операционной системе и среде разработки.
- Чтобы задать
LANGUAGE_KEY
переменную среды, заменитеyour-key
одним из ключей ресурса. - Чтобы задать переменную среды, замените
your-endpoint
конечнойLANGUAGE_ENDPOINT
точкой ресурса.
Внимание
Если вы используете ключ API, сохраните его в другом месте, например в Azure Key Vault. Не включайте ключ API непосредственно в код и никогда не публикуйте его.
Дополнительные сведения о безопасности служб ИИ см. в статье "Проверка подлинности запросов к службам ИИ Azure".
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Примечание.
Если вам нужно получить доступ только к переменным среды в текущей работающей консоли, можно задать переменную set
среды вместо setx
.
После добавления переменных среды может потребоваться перезапустить все запущенные программы, которые потребуются для чтения переменных среды, включая окно консоли. Например, если вы используете Visual Studio в качестве редактора, перезапустите Visual Studio перед запуском примера.
Установка клиентской библиотеки
После установки Python вы можете установить клиентскую библиотеку с помощью следующей команды:
pip install azure-ai-textanalytics==5.2.0
Пример кода
Создайте файл Python и скопируйте код ниже. Теперь выполните код.
# This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
language_key = os.environ.get('LANGUAGE_KEY')
language_endpoint = os.environ.get('LANGUAGE_ENDPOINT')
from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential
# Authenticate the client using your key and endpoint
def authenticate_client():
ta_credential = AzureKeyCredential(language_key)
text_analytics_client = TextAnalyticsClient(
endpoint=language_endpoint,
credential=ta_credential)
return text_analytics_client
client = authenticate_client()
# Example method for detecting sensitive information (PII) from text
def pii_recognition_example(client):
documents = [
"The employee's SSN is 859-98-0987.",
"The employee's phone number is 555-555-5555."
]
response = client.recognize_pii_entities(documents, language="en")
result = [doc for doc in response if not doc.is_error]
for doc in result:
print("Redacted Text: {}".format(doc.redacted_text))
for entity in doc.entities:
print("Entity: {}".format(entity.text))
print("\tCategory: {}".format(entity.category))
print("\tConfidence Score: {}".format(entity.confidence_score))
print("\tOffset: {}".format(entity.offset))
print("\tLength: {}".format(entity.length))
pii_recognition_example(client)
Выходные данные
Redacted Text: The ********'s SSN is ***********.
Entity: employee
Category: PersonType
Confidence Score: 0.97
Offset: 4
Length: 8
Entity: 859-98-0987
Category: USSocialSecurityNumber
Confidence Score: 0.65
Offset: 22
Length: 11
Redacted Text: The ********'s phone number is ************.
Entity: employee
Category: PersonType
Confidence Score: 0.96
Offset: 4
Length: 8
Entity: 555-555-5555
Category: PhoneNumber
Confidence Score: 0.8
Offset: 31
Length: 12
В этом кратком руководстве описано, как отправлять запросы на обнаружение личных сведений с использованием REST API. В следующем примере показано, как использовать cURL для идентификации распознанной конфиденциальной информации в тексте.
Необходимые компоненты
- Подписка Azure — создайте бесплатную учетную запись.
- После получения подписки Azure создайте ресурс служб ИИ.
Установка
Создание переменной среды
Приложение должно пройти проверку подлинности для отправки запросов API. Для рабочей среды используйте безопасный способ хранения и доступа к учетным данным,. В этом примере учетные данные записываются в переменные среды на локальном компьютере, на котором запущено приложение.
Чтобы задать переменную среды для ключа ресурса языка, откройте окно консоли и следуйте инструкциям в вашей операционной системе и среде разработки.
- Чтобы задать
LANGUAGE_KEY
переменную среды, заменитеyour-key
одним из ключей ресурса. - Чтобы задать переменную среды, замените
your-endpoint
конечнойLANGUAGE_ENDPOINT
точкой ресурса.
Внимание
Если вы используете ключ API, сохраните его в другом месте, например в Azure Key Vault. Не включайте ключ API непосредственно в код и никогда не публикуйте его.
Дополнительные сведения о безопасности служб ИИ см. в статье "Проверка подлинности запросов к службам ИИ Azure".
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Примечание.
Если вам нужно получить доступ только к переменным среды в текущей работающей консоли, можно задать переменную set
среды вместо setx
.
После добавления переменных среды может потребоваться перезапустить все запущенные программы, которые потребуются для чтения переменных среды, включая окно консоли. Например, если вы используете Visual Studio в качестве редактора, перезапустите Visual Studio перед запуском примера.
Создание JSON-файла с примером текста запроса
В редакторе кода создайте файл с именем test_pii_payload.json
и скопируйте следующий пример JSON. Этот пример запроса будет отправлен в API на следующем шаге.
{
"kind": "PiiEntityRecognition",
"parameters": {
"modelVersion": "latest"
},
"analysisInput":{
"documents":[
{
"id":"1",
"language": "en",
"text": "Call our office at 312-555-1234, or send an email to support@contoso.com"
}
]
}
}
'
Сохраните test_pii_payload.json
место на компьютере. Например, рабочий стол.
Отправка запроса API обнаружения личных сведений (PII)
Используйте следующие команды, чтобы отправить запрос API с помощью используемой программы. Скопируйте команду в терминал и запустите ее.
параметр | Описание |
---|---|
-X POST <endpoint> |
Указывает конечную точку для доступа к API. |
-H Content-Type: application/json |
Тип содержимого для отправки данных JSON. |
-H "Ocp-Apim-Subscription-Key:<key> |
Указывает ключ для доступа к API. |
-d <documents> |
JSON с документами, которые необходимо отправить. |
Замените C:\Users\<myaccount>\Desktop\test_pii_payload.json
расположением примера файла запроса JSON, созданного на предыдущем шаге.
С помощью командной строки
curl -X POST "%LANGUAGE_ENDPOINT%/language/:analyze-text?api-version=2022-05-01" ^
-H "Content-Type: application/json" ^
-H "Ocp-Apim-Subscription-Key: %LANGUAGE_KEY%" ^
-d "@C:\Users\<myaccount>\Desktop\test_pii_payload.json"
PowerShell
curl.exe -X POST $env:LANGUAGE_ENDPOINT/language/:analyze-text?api-version=2022-05-01 `
-H "Content-Type: application/json" `
-H "Ocp-Apim-Subscription-Key: $env:LANGUAGE_KEY" `
-d "@C:\Users\<myaccount>\Desktop\test_pii_payload.json"
Ответ JSON
{
"kind": "PiiEntityRecognitionResults",
"results": {
"documents": [{
"redactedText": "Call our office at ************, or send an email to *******************",
"id": "1",
"entities": [{
"text": "312-555-1234",
"category": "PhoneNumber",
"offset": 19,
"length": 12,
"confidenceScore": 0.8
}, {
"text": "support@contoso.com",
"category": "Email",
"offset": 53,
"length": 19,
"confidenceScore": 0.8
}],
"warnings": []
}],
"errors": [],
"modelVersion": "2021-01-15"
}
}
Очистка ресурсов
Если вы хотите очистить и удалить подписку на службы искусственного интеллекта Azure, можно удалить ресурс или группу ресурсов. При удалении группы ресурсов также удаляются все связанные с ней ресурсы.