В этой статье показано, как вызвать API анализа изображений версии 3.2 для возврата сведений о визуальных функциях изображения. Здесь также рассказано, как анализировать возвращаемые сведения с помощью клиентских пакетов SDK или REST API.
В коде этого руководства используются удаленные изображения, доступные по URL-адресам. Возможно, вам потребуется попробовать собственные образы, чтобы увидеть полную возможность функций анализа изображений.
При анализе удаленного изображения укажите в тексте запроса его URL-адрес в следующем формате: {"url":"http://example.com/images/test.jpg"}
.
Чтобы проанализировать локальное изображение, поместите двоичные данные изображения в текст HTTP-запроса.
В классе main сохраните ссылку на URL-адрес изображения, которое вы хотите проанализировать.
// URL image used for analyzing an image (image of puppy)
private const string ANALYZE_URL_IMAGE = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/refs/heads/master/ComputerVision/Images/dog.jpg";
Чтобы проанализировать локальное изображение, см . методы ComputerVisionClient , например AnalyzeImageInStreamAsync
. Либо просмотрите пример кода на GitHub для сценариев, включающих использование локальных изображений.
В классе main сохраните ссылку на URL-адрес изображения, которое вы хотите проанализировать.
String pathToRemoteImage = "https://github.com/Azure-Samples/cognitive-services-sample-data-files/raw/master/ComputerVision/Images/faces.jpg";
Чтобы проанализировать локальное изображение, см . такие методы ComputerVision , как AnalyzeImage
. Либо просмотрите пример кода на GitHub для сценариев, включающих использование локальных изображений.
В функции main сохраните ссылку на URL-адрес изображения, которое вы хотите проанализировать.
const describeURL = 'https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/ComputerVision/Images/celebrities.jpg';
Чтобы проанализировать локальное изображение, см . методы ComputerVisionClient , например describeImageInStream
. Либо просмотрите пример кода на GitHub для сценариев, включающих использование локальных изображений.
Сохраните ссылку на URL-адрес изображения, которое вы хотите проанализировать.
remote_image_url = "https://moderatorsampleimages.blob.core.windows.net/samples/sample16.png"
Чтобы проанализировать локальный образ, см . методы ComputerVisionClientOperationsMixin , например analyze_image_in_stream
. Либо просмотрите пример кода на GitHub для сценариев, включающих использование локальных изображений.
API Анализа изображений позволяет использовать все компоненты службы анализа изображений. Выберите, какие операции следует выполнять в зависимости от вашего сценария. Описание каждой функции см. в обзоре Azure AI Vision. Примеры в следующих разделах добавляют все доступные визуальные функции, но для практического использования, скорее всего, потребуется только один или два.
Вы можете указать нужные функции в параметрах URL-запроса к API анализа. Параметр может иметь несколько значений, разделенных запятыми. Для каждой указанной функции требуется больше времени вычисления, поэтому укажите только необходимые компоненты.
Параметр URL-адреса |
значение |
Описание |
features |
Read |
считывает видимый текст на изображении и выводит его в виде структурированных данных JSON |
features |
Description |
описание содержимого изображения с полным предложением на поддерживаемых языках |
features |
SmartCrops |
находит координаты прямоугольника, которые обрезают изображение в требуемом пропорции при сохранении интересующей области |
features |
Objects |
обнаруживает на изображении разные объекты и их приблизительное расположение. Аргумент Objects доступен только на английском языке |
features |
Tags |
теги изображения с подробным списком слов, связанных с содержимым изображения |
Заполненный URL-адрес будет выглядеть примерно так:
<endpoint>/vision/v3.2/analyze?visualFeatures=Tags
Определите новый метод для анализа образов. Добавьте следующий код, который указывает визуальные функции, которые вы хотите извлечь в анализе. Полный список компонентов см. в описании перечисления VisualFeatureTypes.
/*
* ANALYZE IMAGE - URL IMAGE
* Analyze URL image. Extracts captions, categories, tags, objects, faces, racy/adult/gory content,
* brands, celebrities, landmarks, color scheme, and image types.
*/
public static async Task AnalyzeImageUrl(ComputerVisionClient client, string imageUrl)
{
Console.WriteLine("----------------------------------------------------------");
Console.WriteLine("ANALYZE IMAGE - URL");
Console.WriteLine();
// Creating a list that defines the features to be extracted from the image.
List<VisualFeatureTypes?> features = new List<VisualFeatureTypes?>()
{
VisualFeatureTypes.Categories, VisualFeatureTypes.Description,
VisualFeatureTypes.Faces, VisualFeatureTypes.ImageType,
VisualFeatureTypes.Tags, VisualFeatureTypes.Adult,
VisualFeatureTypes.Color, VisualFeatureTypes.Brands,
VisualFeatureTypes.Objects
};
Укажите, какие визуальные компоненты вы хотите извлечь при анализе. Полный список компонентов см. в описании перечисления VisualFeatureTypes.
// This list defines the features to be extracted from the image.
List<VisualFeatureTypes> featuresToExtractFromRemoteImage = new ArrayList<>();
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.DESCRIPTION);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.CATEGORIES);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.TAGS);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.FACES);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.ADULT);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.COLOR);
featuresToExtractFromRemoteImage.add(VisualFeatureTypes.IMAGE_TYPE);
Укажите, какие визуальные компоненты вы хотите извлечь при анализе. Полный список компонентов см. в описании перечисления VisualFeatureTypes.
// Get the visual feature for analysis
const features = ['Categories','Brands','Adult','Color','Description','Faces','Image_type','Objects','Tags'];
const domainDetails = ['Celebrities','Landmarks'];
Укажите, какие визуальные компоненты вы хотите извлечь при анализе. Полный список компонентов см. в описании перечисления VisualFeatureTypes.
print("===== Analyze an image - remote =====")
# Select the visual feature(s) you want.
remote_image_features = [VisualFeatureTypes.categories,VisualFeatureTypes.brands,VisualFeatureTypes.adult,VisualFeatureTypes.color,VisualFeatureTypes.description,VisualFeatureTypes.faces,VisualFeatureTypes.image_type,VisualFeatureTypes.objects,VisualFeatureTypes.tags]
remote_image_details = [Details.celebrities,Details.landmarks]
Вы также можете определить язык для возвращаемых данных.
Следующий параметр URL-запроса определяет язык. Значение по умолчанию — en
.
Параметр URL-адреса |
значение |
Описание |
language |
en |
Английский |
language |
es |
Испанский |
language |
ja |
Японский |
language |
pt |
Португальский |
language |
zh |
Упрощенный китайский |
Заполненный URL-адрес будет выглядеть примерно так:
<endpoint>/vision/v3.2/analyze?visualFeatures=Tags&language=en
Используйте параметр языка вызова AnalyzeImageAsync, чтобы указать язык.
Язык |
Значение |
Английский |
en |
Испанский |
es |
Японский |
ja |
Португальский |
pt |
Упрощенный китайский |
zh |
Вызов метода, указывающий язык, может выглядеть следующим образом.
ImageAnalysis results = await client.AnalyzeImageAsync(imageUrl, visualFeatures: features, language: "en");
Чтобы указать язык, в вызове Analyze используйте AnalyzeImageOptionalParameter.
Язык |
Значение |
Английский |
en |
Испанский |
es |
Японский |
ja |
Португальский |
pt |
Упрощенный китайский |
zh |
Вызов метода, указывающий язык, может выглядеть следующим образом.
ImageAnalysis analysis = compVisClient.computerVision().analyzeImage().withUrl(pathToRemoteImage)
.withVisualFeatures(featuresToExtractFromLocalImage)
.language("en")
.execute();
language
Используйте свойство входных данных ComputerVisionClientAnalyzeImageOptionalParams в вызове Анализа, чтобы указать язык.
Язык |
Значение |
Английский |
en |
Испанский |
es |
Японский |
ja |
Португальский |
pt |
Упрощенный китайский |
zh |
Вызов метода, указывающий язык, может выглядеть следующим образом.
const result = (await computerVisionClient.analyzeImage(imageURL,{visualFeatures: features, language: 'en'}));
language
Используйте параметр вызова analyze_image, чтобы указать язык.
Язык |
Значение |
Английский |
en |
Испанский |
es |
Японский |
ja |
Португальский |
pt |
Упрощенный китайский |
zh |
Вызов метода, указывающий язык, может выглядеть следующим образом.
results_remote = computervision_client.analyze_image(remote_image_url , remote_image_features, remote_image_details, 'en')
В этом разделе показано, как проанализировать результаты вызова API. Здесь также показан сам вызов API.
Служба возвращает ответ HTTP 200
, текст которого содержит запрошенные данные в формате строки JSON. Ниже приведен пример ответа в формате JSON.
{
"metadata":
{
"width": 300,
"height": 200
},
"tagsResult":
{
"values":
[
{
"name": "grass",
"confidence": 0.9960499405860901
},
{
"name": "outdoor",
"confidence": 0.9956876635551453
},
{
"name": "building",
"confidence": 0.9893627166748047
},
{
"name": "property",
"confidence": 0.9853052496910095
},
{
"name": "plant",
"confidence": 0.9791355729103088
}
]
}
}
Коды ошибок
Ниже приводится список возможных ошибок и их причин:
- 400
InvalidImageUrl
— URL-адрес изображения плохо отформатирован или недоступен
InvalidImageFormat
— Входные данные не является допустимым изображением
InvalidImageSize
— слишком большой входной образ
NotSupportedVisualFeature
— Указанный тип компонента недействителен
NotSupportedImage
— Неподдерживаемое изображение, например детская порнография
InvalidDetails
— неподдерживаемое detail
значение параметра
NotSupportedLanguage
— запрошенная операция не поддерживается на указанном языке
BadArgument
— Дополнительные сведения приведены в сообщении об ошибке
- 415 — неподдерживаемый тип носителя. Тип контента не в разрешенных типах:
- Для URL-адреса изображения Content-Type должен иметь значение
application/json
.
- Для двоичных данных изображения Content-Type должен иметь значение
application/octet-stream
или multipart/form-data
.
- 500
FailedToProcess
Timeout
— время ожидания обработки изображений
InternalServerError
Следующий код вызывает API анализа изображений и выводит результаты в консоль.
// Analyze the URL image
ImageAnalysis results = await client.AnalyzeImageAsync(imageUrl, visualFeatures: features);
// Summarizes the image content.
Console.WriteLine("Summary:");
foreach (var caption in results.Description.Captions)
{
Console.WriteLine($"{caption.Text} with confidence {caption.Confidence}");
}
Console.WriteLine();
// Display categories the image is divided into.
Console.WriteLine("Categories:");
foreach (var category in results.Categories)
{
Console.WriteLine($"{category.Name} with confidence {category.Score}");
}
Console.WriteLine();
// Image tags and their confidence score
Console.WriteLine("Tags:");
foreach (var tag in results.Tags)
{
Console.WriteLine($"{tag.Name} {tag.Confidence}");
}
Console.WriteLine();
// Objects
Console.WriteLine("Objects:");
foreach (var obj in results.Objects)
{
Console.WriteLine($"{obj.ObjectProperty} with confidence {obj.Confidence} at location {obj.Rectangle.X}, " +
$"{obj.Rectangle.X + obj.Rectangle.W}, {obj.Rectangle.Y}, {obj.Rectangle.Y + obj.Rectangle.H}");
}
Console.WriteLine();
// Faces
Console.WriteLine("Faces:");
foreach (var face in results.Faces)
{
Console.WriteLine($"A {face.Gender} of age {face.Age} at location {face.FaceRectangle.Left}, " +
$"{face.FaceRectangle.Left}, {face.FaceRectangle.Top + face.FaceRectangle.Width}, " +
$"{face.FaceRectangle.Top + face.FaceRectangle.Height}");
}
Console.WriteLine();
// Adult or racy content, if any.
Console.WriteLine("Adult:");
Console.WriteLine($"Has adult content: {results.Adult.IsAdultContent} with confidence {results.Adult.AdultScore}");
Console.WriteLine($"Has racy content: {results.Adult.IsRacyContent} with confidence {results.Adult.RacyScore}");
Console.WriteLine($"Has gory content: {results.Adult.IsGoryContent} with confidence {results.Adult.GoreScore}");
Console.WriteLine();
// Well-known (or custom, if set) brands.
Console.WriteLine("Brands:");
foreach (var brand in results.Brands)
{
Console.WriteLine($"Logo of {brand.Name} with confidence {brand.Confidence} at location {brand.Rectangle.X}, " +
$"{brand.Rectangle.X + brand.Rectangle.W}, {brand.Rectangle.Y}, {brand.Rectangle.Y + brand.Rectangle.H}");
}
Console.WriteLine();
// Celebrities in image, if any.
Console.WriteLine("Celebrities:");
foreach (var category in results.Categories)
{
if (category.Detail?.Celebrities != null)
{
foreach (var celeb in category.Detail.Celebrities)
{
Console.WriteLine($"{celeb.Name} with confidence {celeb.Confidence} at location {celeb.FaceRectangle.Left}, " +
$"{celeb.FaceRectangle.Top}, {celeb.FaceRectangle.Height}, {celeb.FaceRectangle.Width}");
}
}
}
Console.WriteLine();
// Popular landmarks in image, if any.
Console.WriteLine("Landmarks:");
foreach (var category in results.Categories)
{
if (category.Detail?.Landmarks != null)
{
foreach (var landmark in category.Detail.Landmarks)
{
Console.WriteLine($"{landmark.Name} with confidence {landmark.Confidence}");
}
}
}
Console.WriteLine();
// Identifies the color scheme.
Console.WriteLine("Color Scheme:");
Console.WriteLine("Is black and white?: " + results.Color.IsBWImg);
Console.WriteLine("Accent color: " + results.Color.AccentColor);
Console.WriteLine("Dominant background color: " + results.Color.DominantColorBackground);
Console.WriteLine("Dominant foreground color: " + results.Color.DominantColorForeground);
Console.WriteLine("Dominant colors: " + string.Join(",", results.Color.DominantColors));
Console.WriteLine();
// Detects the image types.
Console.WriteLine("Image Type:");
Console.WriteLine("Clip Art Type: " + results.ImageType.ClipArtType);
Console.WriteLine("Line Drawing Type: " + results.ImageType.LineDrawingType);
Console.WriteLine();
Следующий код вызывает API анализа изображений и выводит результаты в консоль.
// Call the Computer Vision service and tell it to analyze the loaded image.
ImageAnalysis analysis = compVisClient.computerVision().analyzeImage().withUrl(pathToRemoteImage)
.withVisualFeatures(featuresToExtractFromRemoteImage).execute();
// Display image captions and confidence values.
System.out.println("\nCaptions: ");
for (ImageCaption caption : analysis.description().captions()) {
System.out.printf("\'%s\' with confidence %f\n", caption.text(), caption.confidence());
}
// Display image category names and confidence values.
System.out.println("\nCategories: ");
for (Category category : analysis.categories()) {
System.out.printf("\'%s\' with confidence %f\n", category.name(), category.score());
}
// Display image tags and confidence values.
System.out.println("\nTags: ");
for (ImageTag tag : analysis.tags()) {
System.out.printf("\'%s\' with confidence %f\n", tag.name(), tag.confidence());
}
// Display any faces found in the image and their location.
System.out.println("\nFaces: ");
for (FaceDescription face : analysis.faces()) {
System.out.printf("\'%s\' of age %d at location (%d, %d), (%d, %d)\n", face.gender(), face.age(),
face.faceRectangle().left(), face.faceRectangle().top(),
face.faceRectangle().left() + face.faceRectangle().width(),
face.faceRectangle().top() + face.faceRectangle().height());
}
// Display whether any adult or racy content was detected and the confidence
// values.
System.out.println("\nAdult: ");
System.out.printf("Is adult content: %b with confidence %f\n", analysis.adult().isAdultContent(),
analysis.adult().adultScore());
System.out.printf("Has racy content: %b with confidence %f\n", analysis.adult().isRacyContent(),
analysis.adult().racyScore());
// Display the image color scheme.
System.out.println("\nColor scheme: ");
System.out.println("Is black and white: " + analysis.color().isBWImg());
System.out.println("Accent color: " + analysis.color().accentColor());
System.out.println("Dominant background color: " + analysis.color().dominantColorBackground());
System.out.println("Dominant foreground color: " + analysis.color().dominantColorForeground());
System.out.println("Dominant colors: " + String.join(", ", analysis.color().dominantColors()));
// Display any celebrities detected in the image and their locations.
System.out.println("\nCelebrities: ");
for (Category category : analysis.categories()) {
if (category.detail() != null && category.detail().celebrities() != null) {
for (CelebritiesModel celeb : category.detail().celebrities()) {
System.out.printf("\'%s\' with confidence %f at location (%d, %d), (%d, %d)\n", celeb.name(),
celeb.confidence(), celeb.faceRectangle().left(), celeb.faceRectangle().top(),
celeb.faceRectangle().left() + celeb.faceRectangle().width(),
celeb.faceRectangle().top() + celeb.faceRectangle().height());
}
}
}
// Display any landmarks detected in the image and their locations.
System.out.println("\nLandmarks: ");
for (Category category : analysis.categories()) {
if (category.detail() != null && category.detail().landmarks() != null) {
for (LandmarksModel landmark : category.detail().landmarks()) {
System.out.printf("\'%s\' with confidence %f\n", landmark.name(), landmark.confidence());
}
}
}
// Display what type of clip art or line drawing the image is.
System.out.println("\nImage type:");
System.out.println("Clip art type: " + analysis.imageType().clipArtType());
System.out.println("Line drawing type: " + analysis.imageType().lineDrawingType());
Следующий код вызывает API анализа изображений и выводит результаты в консоль.
const result = (await computerVisionClient.analyzeImage(facesImageURL,{visualFeatures: features},{details: domainDetails}));
// Detect faces
// Print the bounding box, gender, and age from the faces.
const faces = result.faces
if (faces.length) {
console.log(`${faces.length} face${faces.length == 1 ? '' : 's'} found:`);
for (const face of faces) {
console.log(` Gender: ${face.gender}`.padEnd(20)
+ ` Age: ${face.age}`.padEnd(10) + `at ${formatRectFaces(face.faceRectangle)}`);
}
} else { console.log('No faces found.'); }
// Formats the bounding box
function formatRectFaces(rect) {
return `top=${rect.top}`.padEnd(10) + `left=${rect.left}`.padEnd(10) + `bottom=${rect.top + rect.height}`.padEnd(12)
+ `right=${rect.left + rect.width}`.padEnd(10) + `(${rect.width}x${rect.height})`;
}
// Detect Objects
const objects = result.objects;
console.log();
// Print objects bounding box and confidence
if (objects.length) {
console.log(`${objects.length} object${objects.length == 1 ? '' : 's'} found:`);
for (const obj of objects) { console.log(` ${obj.object} (${obj.confidence.toFixed(2)}) at ${formatRectObjects(obj.rectangle)}`); }
} else { console.log('No objects found.'); }
// Formats the bounding box
function formatRectObjects(rect) {
return `top=${rect.y}`.padEnd(10) + `left=${rect.x}`.padEnd(10) + `bottom=${rect.y + rect.h}`.padEnd(12)
+ `right=${rect.x + rect.w}`.padEnd(10) + `(${rect.w}x${rect.h})`;
}
console.log();
// Detect tags
const tags = result.tags;
console.log(`Tags: ${formatTags(tags)}`);
// Format tags for display
function formatTags(tags) {
return tags.map(tag => (`${tag.name} (${tag.confidence.toFixed(2)})`)).join(', ');
}
console.log();
// Detect image type
const types = result.imageType;
console.log(`Image appears to be ${describeType(types)}`);
function describeType(imageType) {
if (imageType.clipArtType && imageType.clipArtType > imageType.lineDrawingType) return 'clip art';
if (imageType.lineDrawingType && imageType.clipArtType < imageType.lineDrawingType) return 'a line drawing';
return 'a photograph';
}
console.log();
// Detect Category
const categories = result.categories;
console.log(`Categories: ${formatCategories(categories)}`);
// Formats the image categories
function formatCategories(categories) {
categories.sort((a, b) => b.score - a.score);
return categories.map(cat => `${cat.name} (${cat.score.toFixed(2)})`).join(', ');
}
console.log();
// Detect Brands
const brands = result.brands;
// Print the brands found
if (brands.length) {
console.log(`${brands.length} brand${brands.length != 1 ? 's' : ''} found:`);
for (const brand of brands) {
console.log(` ${brand.name} (${brand.confidence.toFixed(2)} confidence)`);
}
} else { console.log(`No brands found.`); }
console.log();
// Detect Colors
const color = result.color;
printColorScheme(color);
// Print a detected color scheme
function printColorScheme(colors) {
console.log(`Image is in ${colors.isBwImg ? 'black and white' : 'color'}`);
console.log(`Dominant colors: ${colors.dominantColors.join(', ')}`);
console.log(`Dominant foreground color: ${colors.dominantColorForeground}`);
console.log(`Dominant background color: ${colors.dominantColorBackground}`);
console.log(`Suggested accent color: #${colors.accentColor}`);
}
console.log();
// Detect landmarks
const domain = result.landmarks;
// Prints domain-specific, recognized objects
if (domain.length) {
console.log(`${domain.length} ${domain.length == 1 ? 'landmark' : 'landmarks'} found:`);
for (const obj of domain) {
console.log(` ${obj.name}`.padEnd(20) + `(${obj.confidence.toFixed(2)} confidence)`.padEnd(20) + `${formatRectDomain(obj.faceRectangle)}`);
}
} else {
console.log('No landmarks found.');
}
// Formats bounding box
function formatRectDomain(rect) {
if (!rect) return '';
return `top=${rect.top}`.padEnd(10) + `left=${rect.left}`.padEnd(10) + `bottom=${rect.top + rect.height}`.padEnd(12) +
`right=${rect.left + rect.width}`.padEnd(10) + `(${rect.width}x${rect.height})`;
}
console.log();
// Detect Adult content
// Function to confirm racy or not
const isIt = flag => flag ? 'is' : "isn't";
const adult = result.adult;
console.log(`This probably ${isIt(adult.isAdultContent)} adult content (${adult.adultScore.toFixed(4)} score)`);
console.log(`This probably ${isIt(adult.isRacyContent)} racy content (${adult.racyScore.toFixed(4)} score)`);
console.log();
Следующий код вызывает API анализа изображений и выводит результаты в консоль.
# Call API with URL and features
results_remote = computervision_client.analyze_image(remote_image_url , remote_image_features, remote_image_details)
# Print results with confidence score
print("Categories from remote image: ")
if (len(results_remote.categories) == 0):
print("No categories detected.")
else:
for category in results_remote.categories:
print("'{}' with confidence {:.2f}%".format(category.name, category.score * 100))
print()
# Detect faces
# Print the results with gender, age, and bounding box
print("Faces in the remote image: ")
if (len(results_remote.faces) == 0):
print("No faces detected.")
else:
for face in results_remote.faces:
print("'{}' of age {} at location {}, {}, {}, {}".format(face.gender, face.age, \
face.face_rectangle.left, face.face_rectangle.top, \
face.face_rectangle.left + face.face_rectangle.width, \
face.face_rectangle.top + face.face_rectangle.height))
# Adult content
# Print results with adult/racy score
print("Analyzing remote image for adult or racy content ... ")
print("Is adult content: {} with confidence {:.2f}".format(results_remote.adult.is_adult_content, results_remote.adult.adult_score * 100))
print("Has racy content: {} with confidence {:.2f}".format(results_remote.adult.is_racy_content, results_remote.adult.racy_score * 100))
print()
# Detect colors
# Print results of color scheme
print("Getting color scheme of the remote image: ")
print("Is black and white: {}".format(results_remote.color.is_bw_img))
print("Accent color: {}".format(results_remote.color.accent_color))
print("Dominant background color: {}".format(results_remote.color.dominant_color_background))
print("Dominant foreground color: {}".format(results_remote.color.dominant_color_foreground))
print("Dominant colors: {}".format(results_remote.color.dominant_colors))
print()
# Detect image type
# Prints type results with degree of accuracy
print("Type of remote image:")
if results_remote.image_type.clip_art_type == 0:
print("Image is not clip art.")
elif results_remote.image_type.line_drawing_type == 1:
print("Image is ambiguously clip art.")
elif results_remote.image_type.line_drawing_type == 2:
print("Image is normal clip art.")
else:
print("Image is good clip art.")
if results_remote.image_type.line_drawing_type == 0:
print("Image is not a line drawing.")
else:
print("Image is a line drawing")
# Detect brands
print("Detecting brands in remote image: ")
if len(results_remote.brands) == 0:
print("No brands detected.")
else:
for brand in results_remote.brands:
print("'{}' brand detected with confidence {:.1f}% at location {}, {}, {}, {}".format( \
brand.name, brand.confidence * 100, brand.rectangle.x, brand.rectangle.x + brand.rectangle.w, \
brand.rectangle.y, brand.rectangle.y + brand.rectangle.h))
# Detect objects
# Print detected objects results with bounding boxes
print("Detecting objects in remote image:")
if len(results_remote.objects) == 0:
print("No objects detected.")
else:
for object in detect_objects_results_remote.objects:
print("object at location {}, {}, {}, {}".format( \
object.rectangle.x, object.rectangle.x + object.rectangle.w, \
object.rectangle.y, object.rectangle.y + object.rectangle.h))
# Describe image
# Get the captions (descriptions) from the response, with confidence level
print("Description of remote image: ")
if (len(results_remote.description.captions) == 0):
print("No description detected.")
else:
for caption in results_remote.description.captions:
print("'{}' with confidence {:.2f}%".format(caption.text, caption.confidence * 100))
print()
# Return tags
# Print results with confidence score
print("Tags in the remote image: ")
if (len(results_remote.tags) == 0):
print("No tags detected.")
else:
for tag in results_remote.tags:
print("'{}' with confidence {:.2f}%".format(tag.name, tag.confidence * 100))
# Detect celebrities
print("Celebrities in the remote image:")
if (len(results_remote.categories.detail.celebrities) == 0):
print("No celebrities detected.")
else:
for celeb in results_remote.categories.detail.celebrities:
print(celeb["name"])
# Detect landmarks
print("Landmarks in the remote image:")
if len(results_remote.categories.detail.landmarks) == 0:
print("No landmarks detected.")
else:
for landmark in results_remote.categories.detail.landmarks:
print(landmark["name"])