Partilhar via


Functions tan

Returns the tangent of a complex number.

template<class Type>
   complex<Type> tan(
      const complex<Type>& _ComplexNum
   );

Parameters

  • _ComplexNum
    The complex number whose tangent is being determined.

Return Value

The complex number that is the tangent of the input complex number.

Remarks

Identities defining the complex cotangent:

tan (z) = sin (z) / cos (z) = ( exp (iz) – exp (-iz) ) / i( exp (iz) + exp (-iz) )

Example

// complex_tan.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;
   complex <double> c1 ( 3.0 , 4.0 );
   cout << "Complex number c1 = " << c1 << endl;

   // Values of cosine of a complex number c1
   complex <double> c2 = tan ( c1 );
   cout << "Complex number c2 = tan ( c1 ) = " << c2 << endl;
   double absc2 = abs ( c2 );
   double argc2 = arg ( c2 );
   cout << "The modulus of c2 is: " << absc2 << endl;
   cout << "The argument of c2 is: "<< argc2 << " radians, which is " 
        << argc2 * 180 / pi << " degrees." << endl << endl; 

   // Hyperbolic tangent of the standard angles 
   // in the first two quadrants of the complex plane
   vector <complex <double> > v1;
   vector <complex <double> >::iterator Iter1;
   complex <double> vc1  ( polar ( 1.0, pi / 6 ) );
   v1.push_back( tan ( vc1 ) );
   complex <double> vc2  ( polar ( 1.0, pi / 3 ) );
   v1.push_back( tan ( vc2 ) );
   complex <double> vc3  ( polar ( 1.0, pi / 2 ) );
   v1.push_back( tan ( vc3) );
   complex <double> vc4  ( polar ( 1.0, 2 * pi / 3 ) );
   v1.push_back( tan ( vc4 ) );
   complex <double> vc5  ( polar ( 1.0, 5 * pi / 6 ) );
   v1.push_back( tan ( vc5 ) );
   complex <double> vc6  ( polar ( 1.0,  pi ) );
   v1.push_back( tan ( vc6 ) );

   cout << "The complex components tan (vci), where abs (vci) = 1"
        << "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
   for ( Iter1 = v1.begin() ; Iter1 != v1.end() ; Iter1++ )
      cout << *Iter1 << endl;
}
Complex number c1 = (3,4)
Complex number c2 = tan ( c1 ) = (-0.000187346,0.999356)
The modulus of c2 is: 0.999356
The argument of c2 is: 1.57098 radians, which is 90.0107 degrees.

The complex components tan (vci), where abs (vci) = 1
& arg (vci) = i * pi / 6 of the vector v1 are:
(0.713931,0.85004)
(0.24356,0.792403)
(-4.34302e-014,0.761594)
(-0.24356,0.792403)
(-0.713931,0.85004)
(-1.55741,-7.08476e-013)

Requirements

Header: <complex>

Namespace: std

See Also

Other Resources

<complex> Members