series_monthly_decompose_anomalies_fl()
Aplica-se a: ✅Microsoft Fabric✅Azure Data Explorer✅Azure Monitor✅Microsoft Sentinel
Detecte pontos anômalos em uma série diária com sazonalidade mensal.
A função series_monthly_decompose_anomalies_fl()
é uma UDF (função definida pelo usuário) que detecta anomalias em várias séries temporais que têm sazonalidade mensal. A função é construída sobre series_decompose_anomalies(). O desafio é que a duração de um mês é variável entre 28 e 31 dias, portanto, a criação de uma linha de base usando series_decompose_anomalies() pronto para uso detecta sazonalidade fixa, portanto, não corresponde a picos ou outros padrões que ocorrem no 1º ou outro dia de cada mês.
Sintaxe
series_monthly_decompose_anomalies_fl(
threshold)
Saiba mais sobre as convenções de sintaxe.
Parâmetros
Nome | Digitar | Obrigatória | Descrição |
---|---|---|---|
threshold | real |
Limiar de anomalia. O padrão é 1.5. |
Definição de função
Você pode definir a função inserindo seu código como uma função definida por consulta ou criando-a como uma função armazenada em seu banco de dados, da seguinte maneira:
Defina a função usando a instrução let a seguir. Nenhuma permissão é necessária.
Importante
Uma instrução let não pode ser executada sozinha. Ele deve ser seguido por uma instrução de expressão tabular. Para executar um exemplo funcional de series_clean_anomalies_fl()
, consulte Exemplo.
let series_monthly_decompose_anomalies_fl=(tbl:(_key:string, _date:datetime, _val:real), threshold:real=1.5)
{
let _tbl=materialize(tbl
| extend _year=getyear(_date), _dom = dayofmonth(_date), _moy=monthofyear(_date), _doy=dayofyear(_date)
| extend _vdoy = 31*(_moy-1)+_dom // virtual day of year (assuming all months have 31 days)
);
let median_tbl = _tbl | summarize p50=percentiles(_val, 50) by _key, _dom;
let keys = _tbl | summarize by _key | extend dummy=1;
let years = _tbl | summarize by _year | extend dummy=1;
let vdoys = range _vdoy from 0 to 31*12-1 step 1 | extend _moy=_vdoy/31+1, _vdom=_vdoy%31+1, _vdoy=_vdoy+1 | extend dummy=1
| join kind=fullouter years on dummy | join kind=fullouter keys on dummy | project-away dummy, dummy1, dummy2;
vdoys
| join kind=leftouter _tbl on _key, _year, _vdoy
| project-away _key1, _year1, _moy1, _vdoy1
| extend _adoy=31*12*_year+_doy, _vadoy = 31*12*_year+_vdoy
| partition by _key (as T
| where _vadoy >= toscalar(T | summarize (_adoy, _vadoy)=arg_min(_adoy, _vadoy) | project _vadoy) and
_vadoy <= toscalar(T | summarize (_adoy, _vadoy)=arg_max(_adoy, _vadoy) | project _vadoy)
)
| join kind=inner median_tbl on _key, $left._vdom == $right._dom
| extend _vval = coalesce(_val, p50)
//| order by _key asc, _vadoy asc // for debugging
| make-series _vval=avg(_vval), _date=any(_date) default=datetime(null) on _vadoy step 1 by _key
| extend (anomalies, score, baseline) = series_decompose_anomalies(_vval, threshold, 31)
| mv-expand _date to typeof(datetime), _vval to typeof(real), _vadoy to typeof(long), anomalies to typeof(int), score to typeof(real), baseline to typeof(real)
| project-away _vadoy
| project-rename _val=_vval
| where isnotnull(_date)
};
// Write your query to use the function here.
Exemplo
A tabela de entrada deve conter _key
, _date
e _val
colunas. A consulta cria um conjunto de séries temporais de cada um _key
e adiciona colunas de _val
anomalias, pontuação e linha de base.
Para usar uma função definida por consulta, invoque-a após a definição da função inserida.
let series_monthly_decompose_anomalies_fl=(tbl:(_key:string, _date:datetime, _val:real), threshold:real=1.5)
{
let _tbl=materialize(tbl
| extend _year=getyear(_date), _dom = dayofmonth(_date), _moy=monthofyear(_date), _doy=dayofyear(_date)
| extend _vdoy = 31*(_moy-1)+_dom // virtual day of year (assuming all months have 31 days)
);
let median_tbl = _tbl | summarize p50=percentiles(_val, 50) by _key, _dom;
let keys = _tbl | summarize by _key | extend dummy=1;
let years = _tbl | summarize by _year | extend dummy=1;
let vdoys = range _vdoy from 0 to 31*12-1 step 1 | extend _moy=_vdoy/31+1, _vdom=_vdoy%31+1, _vdoy=_vdoy+1 | extend dummy=1
| join kind=fullouter years on dummy | join kind=fullouter keys on dummy | project-away dummy, dummy1, dummy2;
vdoys
| join kind=leftouter _tbl on _key, _year, _vdoy
| project-away _key1, _year1, _moy1, _vdoy1
| extend _adoy=31*12*_year+_doy, _vadoy = 31*12*_year+_vdoy
| partition by _key (as T
| where _vadoy >= toscalar(T | summarize (_adoy, _vadoy)=arg_min(_adoy, _vadoy) | project _vadoy) and
_vadoy <= toscalar(T | summarize (_adoy, _vadoy)=arg_max(_adoy, _vadoy) | project _vadoy)
)
| join kind=inner median_tbl on _key, $left._vdom == $right._dom
| extend _vval = coalesce(_val, p50)
//| order by _key asc, _vadoy asc // for debugging
| make-series _vval=avg(_vval), _date=any(_date) default=datetime(null) on _vadoy step 1 by _key
| extend (anomalies, score, baseline) = series_decompose_anomalies(_vval, threshold, 31)
| mv-expand _date to typeof(datetime), _vval to typeof(real), _vadoy to typeof(long), anomalies to typeof(int), score to typeof(real), baseline to typeof(real)
| project-away _vadoy
| project-rename _val=_vval
| where isnotnull(_date)
};
demo_monthly_ts
| project _key=key, _date=ts, _val=val
| invoke series_monthly_decompose_anomalies_fl()
| project-rename key=_key, ts=_date, val=_val
| render anomalychart with(anomalycolumns=anomalies, xcolumn=ts, ycolumns=val)
Saída
Série A com anomalias mensais:
Série B com anomalias mensais: