Partilhar via


series_fbprophet_forecast_fl()

Aplica-se a: ✅Microsoft FabricAzure Data Explorer

A função series_fbprophet_forecast_fl() é uma UDF (função definida pelo usuário) que usa uma expressão que contém uma série temporal como entrada e prevê os valores dos últimos pontos finais usando o algoritmo Prophet. A função retorna os pontos previstos e seus intervalos de confiança. Essa função é um wrapper KQL (Kusto Query Language) para a classe Prophet() e expõe apenas os parâmetros obrigatórios para previsão. Sinta-se à vontade para modificar sua cópia para suportar mais parâmetros. como feriados, pontos de mudança, ordem de Fourier e assim por diante.

Observação

Considere usar a função nativa series_decompose_forecast(). A função nativa é baseada em um modelo mais simples, mas é mais escalável e é executada mais rapidamente.

Pré-requisitos

  • O plug-in Python deve ser habilitado no cluster. Isso é necessário para o Python embutido usado na função.

Sintaxe

T | invoke series_fbprophet_forecast_fl(, ts_series y_series ,y_pred_series, [ pontos ], [ y_pred_low_series ], [ y_pred_high_series ])

Saiba mais sobre as convenções de sintaxe.

Parâmetros

Nome Digitar Obrigatória Descrição
ts_series string ✔️ O nome da coluna da tabela de entrada que contém os carimbos de data/hora da série a ser prevista.
y_series string ✔️ O nome da coluna da tabela de entrada que contém os valores da série a ser prevista.
y_pred_series string ✔️ O nome da coluna para armazenar a série prevista.
points int ✔️ O número de pontos no final da série a serem previstos (previsão). Esses pontos são excluídos do processo de aprendizagem (regressão). O padrão é 0.
y_pred_low_series string O nome da coluna para armazenar a série dos valores mais baixos do intervalo de confiança. Omita se o intervalo de confiança não for necessário.
y_pred_high_series string O nome da coluna para armazenar a série dos valores mais altos do intervalo de confiança. Omita se o intervalo de confiança não for necessário.

Definição de função

Você pode definir a função inserindo seu código como uma função definida por consulta ou criando-a como uma função armazenada em seu banco de dados, da seguinte maneira:

Defina a função usando a instrução let a seguir. Nenhuma permissão é necessária.

Importante

Uma instrução let não pode ser executada sozinha. Ele deve ser seguido por uma instrução de expressão tabular. Para executar um exemplo funcional de series_fbprophet_forecast_fl(), consulte Exemplo.

let series_fbprophet_forecast_fl=(tbl:(*), ts_series:string, y_series:string, y_pred_series:string, points:int=0, y_pred_low_series:string='', y_pred_high_series:string='')
{
    let kwargs = bag_pack('ts_series', ts_series, 'y_series', y_series, 'y_pred_series', y_pred_series, 'points', points, 'y_pred_low_series', y_pred_low_series, 'y_pred_high_series', y_pred_high_series);
    let code = ```if 1:
        from sandbox_utils import Zipackage
        Zipackage.install("prophet.zip")
        ts_series = kargs["ts_series"]
        y_series = kargs["y_series"]
        y_pred_series = kargs["y_pred_series"]
        points = kargs["points"]
        y_pred_low_series = kargs["y_pred_low_series"]
        y_pred_high_series = kargs["y_pred_high_series"]
        result = df
        sr = pd.Series(df[y_pred_series])
        if y_pred_low_series != '':
            srl = pd.Series(df[y_pred_low_series])
        if y_pred_high_series != '':
            srh = pd.Series(df[y_pred_high_series])
        from prophet import Prophet
        df1 = pd.DataFrame(columns=["ds", "y"])
        for i in range(df.shape[0]):
            df1["ds"] = pd.to_datetime(df[ts_series][i])
            df1["ds"] = df1["ds"].dt.tz_convert(None)
            df1["y"] = df[y_series][i]
            df2 = df1[:-points]
            m = Prophet()
            m.fit(df2)
            future = df1[["ds"]]
            forecast = m.predict(future)
            sr[i] = list(forecast["yhat"])
            if y_pred_low_series != '':
                srl[i] = list(forecast["yhat_lower"])
            if y_pred_high_series != '':
                srh[i] = list(forecast["yhat_upper"])
        result[y_pred_series] = sr
        if y_pred_low_series != '':
            result[y_pred_low_series] = srl
        if y_pred_high_series != '':
            result[y_pred_high_series] = srh
    ```;
    tbl
     | evaluate python(typeof(*), code, kwargs
, external_artifacts=bag_pack('prophet.zip', 'https://artifactswestusnew.blob.core.windows.net/public/prophet-1.1.5.zip?*** YOUR SAS TOKEN ***'))
};
// Write your query to use the function here.

Exemplo

O exemplo a seguir usa o operador invoke para executar a função.

Para usar uma função definida por consulta, invoque-a após a definição da função inserida.

let series_fbprophet_forecast_fl=(tbl:(*), ts_series:string, y_series:string, y_pred_series:string, points:int=0, y_pred_low_series:string='', y_pred_high_series:string='')
{
    let kwargs = bag_pack('ts_series', ts_series, 'y_series', y_series, 'y_pred_series', y_pred_series, 'points', points, 'y_pred_low_series', y_pred_low_series, 'y_pred_high_series', y_pred_high_series);
    let code = ```if 1:
        from sandbox_utils import Zipackage
        Zipackage.install("prophet.zip")
        ts_series = kargs["ts_series"]
        y_series = kargs["y_series"]
        y_pred_series = kargs["y_pred_series"]
        points = kargs["points"]
        y_pred_low_series = kargs["y_pred_low_series"]
        y_pred_high_series = kargs["y_pred_high_series"]
        result = df
        sr = pd.Series(df[y_pred_series])
        if y_pred_low_series != '':
            srl = pd.Series(df[y_pred_low_series])
        if y_pred_high_series != '':
            srh = pd.Series(df[y_pred_high_series])
        from prophet import Prophet
        df1 = pd.DataFrame(columns=["ds", "y"])
        for i in range(df.shape[0]):
            df1["ds"] = pd.to_datetime(df[ts_series][i])
            df1["ds"] = df1["ds"].dt.tz_convert(None)
            df1["y"] = df[y_series][i]
            df2 = df1[:-points]
            m = Prophet()
            m.fit(df2)
            future = df1[["ds"]]
            forecast = m.predict(future)
            sr[i] = list(forecast["yhat"])
            if y_pred_low_series != '':
                srl[i] = list(forecast["yhat_lower"])
            if y_pred_high_series != '':
                srh[i] = list(forecast["yhat_upper"])
        result[y_pred_series] = sr
        if y_pred_low_series != '':
            result[y_pred_low_series] = srl
        if y_pred_high_series != '':
            result[y_pred_high_series] = srh
    ```;
    tbl
     | evaluate python(typeof(*), code, kwargs
, external_artifacts=bag_pack('prophet.zip', 'https://artifactswestusnew.blob.core.windows.net/public/prophet-1.1.5.zip?*** YOUR SAS TOKEN ***'))
};
//
//  Forecasting 3 time series using fbprophet, compare to forecasting using the native function series_decompose_forecast()
//
let min_t = datetime(2017-01-05);
let max_t = datetime(2017-02-03 22:00);
let dt = 2h;
let horizon=7d;
demo_make_series2
| make-series num=avg(num) on TimeStamp from min_t to max_t+horizon step dt by sid 
| extend pred_num_native = series_decompose_forecast(num, toint(horizon/dt))
| extend pred_num=dynamic(null), pred_num_lower=dynamic(null), pred_num_upper=dynamic(null)
| invoke series_fbprophet_forecast_fl('TimeStamp', 'num', 'pred_num', toint(horizon/dt), 'pred_num_lower', 'pred_num_upper')
| render timechart 

Saída

Gráfico mostrando a previsão de algumas séries temporais.