kmeans_dynamic_fl()
A função kmeans_dynamic_fl()
é uma UDF (função definida pelo usuário) que agrupa um conjunto de dados usando o algoritmo k-means. Esta função é semelhante a kmeans_fl(), apenas os recursos são fornecidos por uma única coluna de matriz numérica e não por várias colunas escalares.
Pré-requisitos
- O plug-in Python deve ser habilitado no cluster. Isso é necessário para o Python embutido usado na função.
- O plug-in Python deve estar habilitado no banco de dados. Isso é necessário para o Python embutido usado na função.
Sintaxe
T | invoke kmeans_dynamic_fl(
k,
features_col,
cluster_col)
Saiba mais sobre as convenções de sintaxe.
Parâmetros
Nome | Digitar | Obrigatória | Descrição |
---|---|---|---|
k | int |
✔️ | O número de clusters. |
features_col | string |
✔️ | O nome da coluna que contém a matriz numérica de recursos a serem utilizados para agrupamento. |
cluster_col | string |
✔️ | O nome da coluna para armazenar a ID do cluster de saída para cada registro. |
Definição de função
Você pode definir a função inserindo seu código como uma função definida por consulta ou criando-a como uma função armazenada em seu banco de dados, da seguinte maneira:
Defina a função usando a instrução let a seguir. Nenhuma permissão é necessária.
Importante
Uma instrução let não pode ser executada sozinha. Ele deve ser seguido por uma instrução de expressão tabular. Para executar um exemplo funcional de kmeans_fl()
, consulte o exemplo.
let kmeans_dynamic_fl=(tbl:(*),k:int, features_col:string, cluster_col:string)
{
let kwargs = bag_pack('k', k, 'features_col', features_col, 'cluster_col', cluster_col);
let code = ```if 1:
from sklearn.cluster import KMeans
k = kargs["k"]
features_col = kargs["features_col"]
cluster_col = kargs["cluster_col"]
df1 = df[features_col].apply(np.array)
matrix = np.vstack(df1.values)
kmeans = KMeans(n_clusters=k, random_state=0)
kmeans.fit(matrix)
result = df
result[cluster_col] = kmeans.labels_
```;
tbl
| evaluate python(typeof(*),code, kwargs)
};
// Write your query to use the function here.
Exemplo
O exemplo a seguir usa o operador invoke para executar a função.
Agrupamento de conjuntos de dados artificiais com três clusters
Para usar uma função definida por consulta, invoque-a após a definição da função inserida.
let kmeans_dynamic_fl=(tbl:(*),k:int, features_col:string, cluster_col:string)
{
let kwargs = bag_pack('k', k, 'features_col', features_col, 'cluster_col', cluster_col);
let code = ```if 1:
from sklearn.cluster import KMeans
k = kargs["k"]
features_col = kargs["features_col"]
cluster_col = kargs["cluster_col"]
df1 = df[features_col].apply(np.array)
matrix = np.vstack(df1.values)
kmeans = KMeans(n_clusters=k, random_state=0)
kmeans.fit(matrix)
result = df
result[cluster_col] = kmeans.labels_
```;
tbl
| evaluate python(typeof(*),code, kwargs)
};
union
(range x from 1 to 100 step 1 | extend x=rand()+3, y=rand()+2),
(range x from 101 to 200 step 1 | extend x=rand()+1, y=rand()+4),
(range x from 201 to 300 step 1 | extend x=rand()+2, y=rand()+6)
| project Features=pack_array(x, y), cluster_id=int(null)
| invoke kmeans_dynamic_fl(3, "Features", "cluster_id")
| extend x=toreal(Features[0]), y=toreal(Features[1])
| render scatterchart with(series=cluster_id)