Partilhar via


NormalizationCatalog.NormalizeLogMeanVariance Método

Definição

Sobrecargas

NormalizeLogMeanVariance(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean)

Crie um NormalizingEstimator, que normaliza com base na média computada e na variação do logaritmo dos dados.

NormalizeLogMeanVariance(TransformsCatalog, InputOutputColumnPair[], Boolean, Int64, Boolean)

Crie um NormalizingEstimator, que normaliza com base na média computada e na variação do logaritmo dos dados.

NormalizeLogMeanVariance(TransformsCatalog, String, String, Int64, Boolean)

Crie um NormalizingEstimator, que normaliza com base na média computada e na variação do logaritmo dos dados.

NormalizeLogMeanVariance(TransformsCatalog, String, Boolean, String, Int64, Boolean)

Crie um NormalizingEstimator, que normaliza com base na média computada e na variação do logaritmo dos dados.

NormalizeLogMeanVariance(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean)

Crie um NormalizingEstimator, que normaliza com base na média computada e na variação do logaritmo dos dados.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool useCdf = true);
static member NormalizeLogMeanVariance : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeLogMeanVariance (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional useCdf As Boolean = true) As NormalizingEstimator

Parâmetros

catalog
TransformsCatalog

O catálogo de transformações

columns
InputOutputColumnPair[]

Os pares de colunas de entrada e saída. As colunas de entrada devem ser do tipo SingleDouble de dados ou de um vetor de tamanho conhecido desses tipos. O tipo de dados para a coluna de saída será o mesmo que a coluna de entrada associada.

maximumExampleCount
Int64

Número máximo de exemplos usados para treinar o normalizador.

useCdf
Boolean

Se você deve usar o CDF como saída.

Retornos

Aplica-se a

NormalizeLogMeanVariance(TransformsCatalog, InputOutputColumnPair[], Boolean, Int64, Boolean)

Crie um NormalizingEstimator, que normaliza com base na média computada e na variação do logaritmo dos dados.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, bool fixZero, long maximumExampleCount = 1000000000, bool useCdf = true);
static member NormalizeLogMeanVariance : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * bool * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeLogMeanVariance (catalog As TransformsCatalog, columns As InputOutputColumnPair(), fixZero As Boolean, Optional maximumExampleCount As Long = 1000000000, Optional useCdf As Boolean = true) As NormalizingEstimator

Parâmetros

catalog
TransformsCatalog

O catálogo de transformações

columns
InputOutputColumnPair[]

Os pares de colunas de entrada e saída. As colunas de entrada devem ser do tipo SingleDouble de dados ou de um vetor de tamanho conhecido desses tipos. O tipo de dados para a coluna de saída será o mesmo que a coluna de entrada associada.

fixZero
Boolean

Se você deve mapear de zero a zero, preservando a moderação.

maximumExampleCount
Int64

Número máximo de exemplos usados para treinar o normalizador.

useCdf
Boolean

Se você deve usar o CDF como saída.

Retornos

Aplica-se a

NormalizeLogMeanVariance(TransformsCatalog, String, String, Int64, Boolean)

Crie um NormalizingEstimator, que normaliza com base na média computada e na variação do logaritmo dos dados.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool useCdf = true);
static member NormalizeLogMeanVariance : Microsoft.ML.TransformsCatalog * string * string * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeLogMeanVariance (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional useCdf As Boolean = true) As NormalizingEstimator

Parâmetros

catalog
TransformsCatalog

O catálogo de transformações

outputColumnName
String

Nome da coluna resultante da transformação de inputColumnName. O tipo de dados nesta coluna é o mesmo que a coluna de entrada.

inputColumnName
String

Nome da coluna a ser transformada. Se definido como null, o valor do outputColumnName será usado como origem. O tipo de dados nesta coluna deve ser Single, Double ou um vetor de tamanho conhecido desses tipos.

maximumExampleCount
Int64

Número máximo de exemplos usados para treinar o normalizador.

useCdf
Boolean

Se você deve usar o CDF como saída.

Retornos

Exemplos

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeLogMeanVariance
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[5] { 1, 1, 3, 0, float.MaxValue } },
                new DataPoint(){ Features = new float[5] { 2, 2, 2, 0, float.MinValue } },
                new DataPoint(){ Features = new float[5] { 0, 0, 1, 0, 0} },
                new DataPoint(){ Features = new float[5] {-1,-1,-1, 1, 1} }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // NormalizeLogMeanVariance normalizes the data based on the computed
            // mean and variance of the logarithm of the data.
            // Uses Cumulative distribution function as output.
            var normalize = mlContext.Transforms.NormalizeLogMeanVariance(
                "Features", useCdf: true);

            // NormalizeLogMeanVariance normalizes the data based on the computed
            // mean and variance of the logarithm of the data.
            var normalizeNoCdf = mlContext.Transforms.NormalizeLogMeanVariance(
                "Features", useCdf: false);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator.
            // This operation doesn't actually evaluate data until we read the data
            // below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeNoCdfTransform = normalizeNoCdf.Fit(data);
            var noCdfData = normalizeNoCdfTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  0.1587, 0.1587, 0.8654, 0.0000, 0.8413
            //  0.8413, 0.8413, 0.5837, 0.0000, 0.0000
            //  0.0000, 0.0000, 0.0940, 0.0000, 0.0000
            //  0.0000, 0.0000, 0.0000, 0.0000, 0.1587

            var columnFixZero = noCdfData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in columnFixZero)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.8854, 1.8854, 5.2970, 0.0000, 7670682000000000000000000000000000000.0000
            //  4.7708, 4.7708, 3.0925, 0.0000, -7670682000000000000000000000000000000.0000
            // -1.0000,-1.0000, 0.8879, 0.0000, -1.0000
            // -3.8854,-3.8854,-3.5213, 0.0000, -0.9775

            // Let's get transformation parameters. Since we work with only one
            // column we need to pass 0 as parameter for
            // GetNormalizerModelParameters. If we have multiple columns
            // transformations we need to pass index of InputOutputColumnPair.
            var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
                as CdfNormalizerModelParameters<ImmutableArray<float>>;

            Console.WriteLine("The 1-index value in resulting array would be " +
                "produce by:");

            Console.WriteLine("y = 0.5* (1 + ERF((Math.Log(x)- " + transformParams
                .Mean[1] + ") / (" + transformParams.StandardDeviation[1] +
                " * sqrt(2)))");

            // ERF is https://en.wikipedia.org/wiki/Error_function.
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = 0.5* (1 + ERF((Math.Log(x)- 0.3465736) / (0.3465736 * sqrt(2)))
            var noCdfParams = normalizeNoCdfTransform.GetNormalizerModelParameters(
                0) as AffineNormalizerModelParameters<ImmutableArray<float>>;
            var offset = noCdfParams.Offset.Length == 0 ? 0 : noCdfParams.Offset[1];
            var scale = noCdfParams.Scale[1];
            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by: y = (x - ({offset})) * {scale}");
            // Expected output:
            // The 1-index value in resulting array would be produce by: y = (x - (0.3465736)) * 2.88539
        }

        private class DataPoint
        {
            [VectorType(5)]
            public float[] Features { get; set; }
        }
    }
}

Aplica-se a

NormalizeLogMeanVariance(TransformsCatalog, String, Boolean, String, Int64, Boolean)

Crie um NormalizingEstimator, que normaliza com base na média computada e na variação do logaritmo dos dados.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeLogMeanVariance (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, bool fixZero, string inputColumnName = default, long maximumExampleCount = 1000000000, bool useCdf = true);
static member NormalizeLogMeanVariance : Microsoft.ML.TransformsCatalog * string * bool * string * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeLogMeanVariance (catalog As TransformsCatalog, outputColumnName As String, fixZero As Boolean, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional useCdf As Boolean = true) As NormalizingEstimator

Parâmetros

catalog
TransformsCatalog

O catálogo de transformações

outputColumnName
String

Nome da coluna resultante da transformação de inputColumnName. O tipo de dados nesta coluna é o mesmo que a coluna de entrada.

fixZero
Boolean

Se você deve mapear de zero a zero, preservando a moderação.

inputColumnName
String

Nome da coluna a ser transformada. Se definido como null, o valor do outputColumnName será usado como origem. O tipo de dados nesta coluna deve ser Single, Double ou um vetor de tamanho conhecido desses tipos.

maximumExampleCount
Int64

Número máximo de exemplos usados para treinar o normalizador.

useCdf
Boolean

Se você deve usar o CDF como saída.

Retornos

Exemplos

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeLogMeanVarianceFixZero
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for exception tracking and logging,
            // as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[5] { 1, 1, 3, 0, float.MaxValue } },
                new DataPoint(){ Features = new float[5] { 2, 2, 2, 0, float.MinValue } },
                new DataPoint(){ Features = new float[5] { 0, 0, 1, 0, 0} },
                new DataPoint(){ Features = new float[5] {-1,-1,-1, 1, 1} }
            };
            // Convert training data to IDataView, the general data type used in ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // NormalizeLogMeanVariance normalizes the data based on the computed mean and variance of the logarithm of the data.
            // Uses Cumulative distribution function as output.
            var normalize = mlContext.Transforms.NormalizeLogMeanVariance("Features", true, useCdf: true);

            // NormalizeLogMeanVariance normalizes the data based on the computed mean and variance of the logarithm of the data.
            var normalizeNoCdf = mlContext.Transforms.NormalizeLogMeanVariance("Features", true, useCdf: false);

            // Now we can transform the data and look at the output to confirm the behavior of the estimator.
            // This operation doesn't actually evaluate data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeNoCdfTransform = normalizeNoCdf.Fit(data);
            var noCdfData = normalizeNoCdfTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString("f4"))));
            // Expected output:
            //  0.1587, 0.1587, 0.8654, 0.0000, 0.8413
            //  0.8413, 0.8413, 0.5837, 0.0000, 0.0000
            //  0.0000, 0.0000, 0.0940, 0.0000, 0.0000
            //  0.0000, 0.0000, 0.0000, 0.0000, 0.1587

            var columnFixZero = noCdfData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in columnFixZero)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString("f4"))));
            // Expected output:
            //  2.0403, 2.0403, 4.0001, 0.0000, 5423991000000000000000000000000000000.0000
            //  4.0806, 4.0806, 2.6667, 0.0000,-5423991000000000000000000000000000000.0000
            //  0.0000, 0.0000, 1.3334, 0.0000, 0.0000
            // -2.0403,-2.0403,-1.3334, 0.0000, 0.0159

            // Let's get transformation parameters. Since we work with only one column we need to pass 0 as parameter for GetNormalizerModelParameters.
            // If we have multiple columns transformations we need to pass index of InputOutputColumnPair.
            var transformParams = normalizeTransform.GetNormalizerModelParameters(0) as CdfNormalizerModelParameters<ImmutableArray<float>>;
            Console.WriteLine("The values in the column with index 1 in the resulting array would be produced by:");
            Console.WriteLine($"y = 0.5* (1 + ERF((Math.Log(x)- {transformParams.Mean[1]}) / ({transformParams.StandardDeviation[1]} * sqrt(2)))");

            // ERF is https://en.wikipedia.org/wiki/Error_function.
            // Expected output:
            // The values in the column with index 1 in the resulting array would be produced by:
            // y = 0.5 * (1 + ERF((Math.Log(x) - 0.3465736) / (0.3465736 * sqrt(2)))
            var noCdfParams = normalizeNoCdfTransform.GetNormalizerModelParameters(0) as AffineNormalizerModelParameters<ImmutableArray<float>>;
            var offset = noCdfParams.Offset.Length == 0 ? 0 : noCdfParams.Offset[1];
            var scale = noCdfParams.Scale[1];
            Console.WriteLine($"The values in the column with index 1 in the resulting array would be produced by: y = (x - ({offset})) * {scale}");
            // Expected output:
            // The values in the column with index 1 in the resulting array would be produced by: y = (x - (0)) * 2.040279
        }

        private class DataPoint
        {
            [VectorType(5)]
            public float[] Features { get; set; }
        }
    }
}

Aplica-se a