Databricks Runtime 7.6 para Aprendizado de Máquina (EoS)
Nota
O suporte para esta versão do Databricks Runtime terminou. Para obter a data de fim do suporte, consulte Histórico de fim do suporte. Para todas as versões suportadas do Databricks Runtime, consulte Versões e compatibilidade das notas de versão do Databricks Runtime.
A Databricks lançou esta versão em fevereiro de 2021.
O Databricks Runtime 7.6 for Machine Learning fornece um ambiente pronto para uso para aprendizado de máquina e ciência de dados com base no Databricks Runtime 7.6 (EoS). O Databricks Runtime ML contém muitas bibliotecas populares de aprendizado de máquina, incluindo TensorFlow, PyTorch e XGBoost. Ele também suporta treinamento distribuído de aprendizagem profunda usando Horovod.
Para obter mais informações, incluindo instruções para criar um cluster de ML do Databricks Runtime, consulte IA e aprendizado de máquina no Databricks.
Para obter ajuda com a migração do Databricks Runtime 6.x, consulte Guia de migração do Databricks Runtime 7.x (EoS).
Novos recursos e grandes mudanças
O Databricks Runtime 7.6 ML é construído sobre o Databricks Runtime 7.6. Para obter informações sobre o que há de novo no Databricks Runtime 7.6, incluindo Apache Spark MLlib e SparkR, consulte as notas de versão do Databricks Runtime 7.6 (EoS ).
Preterições
- O Tensoflow 1.x não será suportado na próxima versão principal do Databricks Runtime
- Os seguintes pacotes CUDA foram preteridos e serão removidos na próxima versão principal do Databricks Runtime:
- cuda-command-line-tools
- cuda-compilador
- cuda-cudart-dev
- cuda-punho
- cuda-cufft-dev
- Cuda-Cuobjdump
- Cuda-Cupti
- Cuda-Curand
- cuda-curand-dev
- Cuda-Cusolver
- cuda-cusolver-dev
- cuda-cusparse
- cuda-cusparse-dev
- cuda-documentação
- cuda-driver-dev
- CUDA-GDB
- cuda-gpu-biblioteca-conselheiro
- cuda-bibliotecas-dev
- cuda-licença
- cuda-memcheck
- cuda-minimal-construir
- cuda-misc-cabeçalhos
- CUDA-NPP
- cuda-npp-dev
- Cuda-Nsight
- CUDA-NVCC
- CUDA-NVDISASM
- CUDA-NVCographo
- cuda-nvgraph-dev
- CUDA-NVJPEG
- cuda-nvjpeg-dev
- cuda-nvml-dev
- Cuda-Nvprune
- cuda-nvrtc-dev
- CUDA-NVVP
- cuda-amostras
- cuda-sanitizer-api
- CUDA-Kit de ferramentas
- cuda-ferramentas
- cuda-ferramentas visuais
- GLUT3 LIVRE
- libcublas-dev
- libcudnn7-dev
- libdrm-dev
- libegl1
- Libegm-Mesa0
- libgbl1-mesa-dev
- libgbm1
- libgles1
- libgles2
- libglu1-mesa
- libglu1-mesa-dev
- libnccl-dev
- libnvinfer-dev
- libnvinfer-plugin-dev
- libopengl0
- libwayland-servidor0
- libx11-xcb-dev
- libxcb-dri2-0-dev
- libxcb-dri3-dev
- libxcb-glx0-dev
- libxcb-presente-dev
- libxcb-randr0
- libxcb-randr0-dev
- libxcb-render0-dev
- libxcb-shape0-dev
- libxcb-sync-dev
- libxcb-xfixes0
- libxcb-xfixes0-dev
- libxdamage-dev
- libxext-dev
- libxfixes-dev
- libxi-dev
- libxmu-dev
- libxmu-cabeçalhos
- libxshmfence-dev
- libxxf86vm-dev
- mesa-common-dev
- nsight-computação
- Sistemas de visão
- x11proto-damage-dev
- x11proto-fixes-dev
- x11proto-input-dev
- x11proto-xext-dev
- x11proto-xf86vidmode-dev
Principais alterações no ambiente Python do Databricks Runtime ML
Consulte Databricks Runtime 7.6 (EoS) para obter as principais alterações no ambiente Python do Databricks Runtime. Para obter uma lista completa dos pacotes Python instalados e suas versões, consulte Bibliotecas Python.
Pacotes Python atualizados
- Databricks-CLI 0.14.0 -> 0.14.1
- coalas 1.4.0 -> 1.5.0
- LightGBM 2.3.0 -> 3.1.1
- Mlflow 1.12.1 -> 1.13.1
- Parcela 4.12.0 -> 4.14.1
- Pitocha 1.7.0 -> 1.7.1
- Torchvision 0.8.1 -> 0.8.2
- XGboost 1.2.1 -> 1.3.1
Melhorias
Integração PySpark do XGBoost (Public Preview)
A integração do XGBoost com o PySpark foi melhorada. O pacote sparkdl 2.1.0-db5
inclui dois novos estimadores XgboostRegressor
PySpark ML e XgboostClassifier
, que permitem aos usuários treinar modelos XGBoost em PySpark ML Pipelines.
Antes desta versão, o XGBoost não estava integrado com o PySpark. Os usuários tinham que usar xgboost4j-spark
no Scala ou quebrar o PySpark ML Pipeline, coletar o Spark DataFrame no driver como um Pandas DataFrame e usar o pacote xgboost
Python . Consulte a documentação da API sparkdl e Usar XGBoost no Azure Databricks para obter mais detalhes.
Ambiente do sistema
O ambiente do sistema no Databricks Runtime 7.6 ML difere do Databricks Runtime 7.6 da seguinte forma:
- DBUtils: Databricks Runtime ML não contém o utilitário Biblioteca (dbutils.library) (legado).
Você pode usar
%pip
e%conda
comandos em vez disso. Veja Bibliotecas em Python com âmbito de bloco de notas. - Para clusters de GPU, o Databricks Runtime ML inclui as seguintes bibliotecas de GPU NVIDIA:
- CUDA 10.1 Atualização 2
- cuDNN 7.6.5
- NCCL 2.7.3
- TensorRT 6.0.1
Bibliotecas
As seções a seguir listam as bibliotecas incluídas no Databricks Runtime 7.6 ML que diferem daquelas incluídas no Databricks Runtime 7.6.
Nesta secção:
- Bibliotecas de nível superior
- Bibliotecas Python
- Bibliotecas R
- Bibliotecas Java e Scala (cluster Scala 2.12)
Bibliotecas de nível superior
O Databricks Runtime 7.6 ML inclui as seguintes bibliotecas de camada superior:
- GraphFrames
- Horovod e HorovodRunner
- MLflow
- PyTorch
- conector spark-tensorflow;
- TensorFlow
- TensorBoard
Bibliotecas Python
O Databricks Runtime 7.6 ML usa o Conda para gerenciamento de pacotes Python e inclui muitos pacotes ML populares.
Além dos pacotes especificados nos ambientes Conda nas seções a seguir, o Databricks Runtime 7.6 ML também instala os seguintes pacotes:
- hiperopt 0.2.5.db1
- Faísca 2.1.0-DB5
Bibliotecas Python em clusters de CPU
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_1
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=pyhd3eb1b0_2
- bcrypt=3.2.0=py37h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.17.1=h27cfd23_0
- ca-certificates=2021.1.19=h06a4308_1 # (updated from h06a4308_0 in May 26, 2021 maintenance update)
- cachetools=4.2.0=pyhd3eb1b0_0
- certifi=2020.12.5=py37h06a4308_0
- cffi=1.14.0=py37he30daa8_1 # (updated from py37h2e261b9_0 in May 26, 2021 maintenance update)
- chardet=3.0.4=py37h06a4308_1003
- click=7.0=py37_0
- cloudpickle=1.4.1=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.8=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb=4.0.5=py_0
- gitpython=3.1.0=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=py37_0
- jedi=0.17.2=py37h06a4308_1
- jinja2=2.11.1=py_0
- jmespath=0.10.0=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.17.1=h173b8e3_0 # (updated from 1.16.4 in May 26, 2021 maintenance update)
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.3=he6710b0_2 # (updated from 3.2.1 in May 26, 2021 maintenance update)
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=12.2=h20c2e04_0 # (updated from 11.2 in May 26, 2021 maintenance update)
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- libuv=1.40.0=h7b6447c_0
- lightgbm=3.1.1=py37h2531618_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h14c3975_1
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he8ac12f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_1
- ninja=1.10.2=py37hff7bd54_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1k=h27cfd23_0 # (updated from 1.1.1i in May 26, 2021 maintenance update)
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.14.1=pyhd3eb1b0_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.6=py37h3c74f83_1 # (updated from 2.8.4 in May 26, 2021 maintenance update)
- ptyprocess=0.6.0=pyhd3eb1b0_2
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=2.0.1=py37h06a4308_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=pyhd3eb1b0_1
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_1
- python=3.7.10=hdb3f193_0 # (updated from 3.7.6 in May 26, 2021 maintenance update)
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.7.1=py3.7_cpu_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=8.1=h27cfd23_0 # (updated from 7.0 in May 26, 2021 maintenance update)
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.4=pyhd3eb1b0_0
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37h06a4308_0
- smmap=3.0.4=py_0
- sqlite=3.35.4=hdfb4753_0 # (updated from 3.31.1 in May 26, 2021 maintenance update)
- sqlparse=0.4.1=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tk=8.6.10=hbc83047_0 # (updated from 8.6.8 in May 26, 2021 maintenance update)
- torchvision=0.8.2=py37_cpu
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- typing_extensions=3.7.4.3=py_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.5=h7b6447c_0 # (updated from 5.2.4 in May 26, 2021 maintenance update)
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- azure-core==1.10.0
- azure-storage-blob==12.7.0
- databricks-cli==0.14.1
- diskcache==5.1.0
- docker==4.4.1
- gorilla==0.3.0
- horovod==0.20.3
- joblibspark==0.3.0
- keras-preprocessing==1.1.2
- koalas==1.5.0
- mleap==0.16.1
- mlflow==1.13.1
- msrest==0.6.19
- opt-einsum==3.3.0
- petastorm==0.9.7
- pyarrow==1.0.1
- pyyaml==5.4
- querystring-parser==1.2.4
- seaborn==0.10.0
- spark-tensorflow-distributor==0.1.0
- tensorboard==2.3.0
- tensorboard-plugin-wit==1.8.0
- tensorflow-cpu==2.3.1
- tensorflow-estimator==2.3.0
- termcolor==1.1.0
- xgboost==1.3.1
prefix: /databricks/conda/envs/databricks-ml
Bibliotecas Python em clusters GPU
name: databricks-ml-gpu
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_1
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=pyhd3eb1b0_2
- bcrypt=3.2.0=py37h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.17.1=h27cfd23_0
- ca-certificates=2021.1.19=h06a4308_1 # (updated from h06a4308_0 in May 26, 2021 maintenance update)
- cachetools=4.2.0=pyhd3eb1b0_0
- certifi=2020.12.5=py37h06a4308_0
- cffi=1.14.0=py37he30daa8_1 # (updated from py37h2e261b9_0 in May 26, 2021 maintenance update)
- chardet=3.0.4=py37h06a4308_1003
- click=7.0=py37_0
- cloudpickle=1.4.1=py_0
- configparser=3.7.4=py37_0
- cryptography=2.8=py37h1ba5d50_0
- cudatoolkit=10.1.243=h6bb024c_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb=4.0.5=py_0
- gitpython=3.1.0=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=py37_0
- jedi=0.17.2=py37h06a4308_1
- jinja2=2.11.1=py_0
- jmespath=0.10.0=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.17.1=h173b8e3_0 # (updated from 1.16.4 in May 26, 2021 maintenance update)
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.3=he6710b0_2 # (updated from 3.2.1 in May 26, 2021 maintenance update)
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=12.2=h20c2e04_0 # (updated from 11.2 in May 26, 2021 maintenance update)
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- libuv=1.40.0=h7b6447c_0
- lightgbm=3.1.1=py37h2531618_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h14c3975_1
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he8ac12f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_1
- ninja=1.10.2=py37hff7bd54_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1k=h27cfd23_0 # (updated from 1.1.1i in May 26, 2021 maintenance update)
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.14.1=pyhd3eb1b0_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.6=py37h3c74f83_1 # (updated from 2.8.4 in May 26, 2021 maintenance update)
- ptyprocess=0.6.0=pyhd3eb1b0_2
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=2.0.1=py37h06a4308_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=pyhd3eb1b0_1
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_1
- python=3.7.10=hdb3f193_0 # (updated from 3.7.6 in May 26, 2021 maintenance update)
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.7.1=py3.7_cuda10.1.243_cudnn7.6.3_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=8.1=h27cfd23_0 # (updated from 7.0 in May 26, 2021 maintenance update)
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.4=pyhd3eb1b0_0
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37h06a4308_0
- smmap=3.0.4=py_0
- sqlite=3.35.4=hdfb4753_0 # (updated from 3.31.1 in May 26, 2021 maintenance update)
- sqlparse=0.4.1=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tk=8.6.10=hbc83047_0 # (updated from 8.6.8 in May 26, 2021 maintenance update)
- torchvision=0.8.2=py37_cu101
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- typing_extensions=3.7.4.3=py_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.5=h7b6447c_0 # (updated from 5.2.4 in May 26, 2021 maintenance update)
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- azure-core==1.10.0
- azure-storage-blob==12.7.0
- databricks-cli==0.14.1
- diskcache==5.1.0
- docker==4.4.1
- gorilla==0.3.0
- horovod==0.20.3
- joblibspark==0.3.0
- keras-preprocessing==1.1.2
- koalas==1.5.0
- mleap==0.16.1
- mlflow==1.13.1
- msrest==0.6.19
- opt-einsum==3.3.0
- petastorm==0.9.7
- pyarrow==1.0.1
- pyyaml==5.4
- querystring-parser==1.2.4
- seaborn==0.10.0
- spark-tensorflow-distributor==0.1.0
- tensorboard==2.3.0
- tensorboard-plugin-wit==1.8.0
- tensorflow==2.3.1
- tensorflow-estimator==2.3.0
- termcolor==1.1.0
- xgboost==1.3.1
prefix: /databricks/conda/envs/databricks-ml-gpu
Pacotes Spark contendo módulos Python
Pacote Spark | Módulo Python | Versão |
---|---|---|
quadros gráficos | quadros gráficos | 0.8.1-DB1-Faísca3.0 |
Bibliotecas R
As bibliotecas R são idênticas às bibliotecas R no Databricks Runtime 7.6.
Bibliotecas Java e Scala (cluster Scala 2.12)
Além das bibliotecas Java e Scala no Databricks Runtime 7.6, o Databricks Runtime 7.6 ML contém os seguintes JARs:
Clusters de CPU
ID do Grupo | ID do Artefacto | Versão |
---|---|---|
com.typesafe.akka | AKKA-actor_2,12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.3-4882dc3 |
ml.dmlc | xgboost4j-spark_2,12 | 1.2.0 |
ml.dmlc | xgboost4j_2.12 | 1.2.0 |
org.mlflow | mlflow-cliente | 1.13.1 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
Clusters GPU
ID do Grupo | ID do Artefacto | Versão |
---|---|---|
com.typesafe.akka | AKKA-actor_2,12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.3-4882dc3 |
ml.dmlc | xgboost4j-faísca-gpu_2.12 | 1.2.0 |
ml.dmlc | xgboost4j-gpu_2,12 | 1.2.0 |
org.mlflow | mlflow-cliente | 1.13.1 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |