Databricks Runtime 6.3 para ML (EoS)
Nota
O suporte para esta versão do Databricks Runtime terminou. Para obter a data de fim do suporte, consulte Histórico de fim do suporte. Para todas as versões suportadas do Databricks Runtime, consulte Versões e compatibilidade das notas de versão do Databricks Runtime.
A Databricks lançou esta versão em janeiro de 2020.
O Databricks Runtime 6.3 for Machine Learning fornece um ambiente pronto para uso para aprendizado de máquina e ciência de dados com base no Databricks Runtime 6.3 (EoS). O Databricks Runtime ML contém muitas bibliotecas populares de aprendizado de máquina, incluindo TensorFlow, PyTorch, Keras e XGBoost. Ele também suporta treinamento distribuído de aprendizagem profunda usando Horovod.
Para obter mais informações, incluindo instruções para criar um cluster de ML do Databricks Runtime, consulte IA e aprendizado de máquina no Databricks.
Novas funcionalidades
O Databricks Runtime 6.3 ML é construído sobre o Databricks Runtime 6.3. Para obter informações sobre o que há de novo no Databricks Runtime 6.3, consulte as notas de versão do Databricks Runtime 6.3 (EoS ).
Melhorias
Bibliotecas de aprendizado de máquina atualizadas
- PyTorch: 1.3.0 a 1.3.1
- TorchVision: 0.4.1 a 0.4.2 - inclui um back-end de leitor de vídeo otimizado
- MLflow: 1.4.0 a 1.5.0
- Inclui suporte para os sabores LightGBM, XGBoost e Gluon.
- Corrigido um bug em que os projetos MLflow não podiam ser executados em clusters de ML do Databricks Runtime.
- Para obter mais detalhes, consulte a versão MLflow 1.5.0.
- Hyperopt: 0.2.1 a 0.2.2 - As atualizações incluem:
Corrigido um bug no ATPE (Adaptiv-TPE), onde o algoritmo não funcionava corretamente com
hp.choice
ehp.randint
.Corrigidos alguns bugs no uso do tqdm, um módulo Python para relatar o progresso. Por exemplo, a barra de progresso às vezes estava incorreta ao executar paralelamente
fmin()
.Agora avisa sobre novas tentativas de tarefas do Spark para testes de longa duração. Quando as novas tentativas estiverem ativadas e as execuções de avaliação estiverem progredindo lentamente, esta mensagem será impressa:
SparkTrials found that the Spark conf 'spark.task.maxFailures' is set to 4, which will make trials re-run automatically if they fail. If failures can occur from bad hyperparameter settings, or if trials are very long-running, then retries may not be a good idea. Consider setting spark.conf.set('spark.task.maxFailures', '1') to prevent retries.
Outras pequenas correções. Para obter detalhes, consulte a versão 0.2.2 do Hyperopt.
Correções de erros
Corrigido um problema que causava algumas métricas de cluster ausentes, que acontecem com frequência em clusters de GPU com nós de várias GPUs.
Ambiente do sistema
O ambiente do sistema no Databricks Runtime 6.3 ML difere do Databricks Runtime 6.3 da seguinte forma:
- DBUtils: Não contém o utilitário Biblioteca (dbutils.library) (legado).
- Para clusters de GPU, as seguintes bibliotecas de GPU NVIDIA:
- CUDA 10,0
- cuDNN 7.6.4
- NCCL 2.4.8
Bibliotecas
As seções a seguir listam as bibliotecas incluídas no Databricks Runtime 6.3 ML que diferem daquelas incluídas no Databricks Runtime 6.3.
Nesta secção:
- Bibliotecas de nível superior
- Bibliotecas Python
- Bibliotecas R
- Bibliotecas Java e Scala (cluster Scala 2.11)
Bibliotecas de nível superior
O Databricks Runtime 6.3 ML inclui as seguintes bibliotecas de camada superior:
- GraphFrames
- Horovod e HorovodRunner
- MLflow
- PyTorch
- conector spark-tensorflow;
- TensorFlow
- TensorBoard
Bibliotecas Python
O Databricks Runtime 6.3 ML usa o Conda para gerenciamento de pacotes Python e inclui muitos pacotes de ML populares. A seção a seguir descreve o ambiente Conda para Databricks Runtime 6.3 ML.
Python em clusters de CPU
name: databricks-ml
channels:
- Databricks
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=2.0=cpu_0
- _tflow_select=2.3.0=mkl
- absl-py=0.8.1=py37_0
- asn1crypto=0.24.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_0
- blas=1.0=mkl
- boto=2.49.0=py37_0
- boto3=1.9.162=py_0
- botocore=1.12.163=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.1.23=0
- certifi=2019.3.9=py37_0
- cffi=1.12.2=py37h2e261b9_1
- chardet=3.0.4=py37_1003
- click=7.0=py_0
- cloudpickle=0.8.0=py37_0
- colorama=0.4.1=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.6.1=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.6=py37he6710b0_0
- decorator=4.4.0=py37_1
- docutils=0.14=py37_0
- entrypoints=0.3=py37_0
- et_xmlfile=1.0.1=py37_0
- flask=1.0.2=py37_1
- freetype=2.9.1=h8a8886c_1
- future=0.17.1=py37_0
- gast=0.2.2=py37_0
- gitdb2=2.0.6=py_0
- gitpython=2.1.11=py37_0
- google-pasta=0.1.8=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- gunicorn=19.9.0=py37_0
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- html5lib=1.0.1=py_0
- icu=58.2=h9c2bf20_1
- idna=2.8=py37_0
- intel-openmp=2019.3=199
- ipykernel=5.1.0=py37h39e3cac_0
- ipython=7.4.0=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py_0
- jdcal=1.4=py37_0
- jedi=0.13.3=py37_0
- jinja2=2.10=py37_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.2.4=py37_0
- jupyter_core=4.4.0=py37_0
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.0.1=py37hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=8.2.0=hdf63c60_1
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.36=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.2=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.10=h2733197_2
- libxgboost=0.90=he6710b0_1
- libxml2=2.9.9=hea5a465_1
- libxslt=1.1.33=h7d1a2b0_0
- llvmlite=0.28.0=py37hd408876_0
- lxml=4.3.2=py37hefd8a0e_0
- mako=1.0.10=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- mkl=2019.3=199
- mkl_fft=1.0.10=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- ncurses=6.1=he6710b0_1
- networkx=2.2=py37_1
- ninja=1.9.0=py37hfd86e86_0
- nose=1.3.7=py37_2
- numba=0.43.1=py37h962f231_0
- numpy=1.16.2=py37h7e9f1db_0
- numpy-base=1.16.2=py37hde5b4d6_0
- olefile=0.46=py_0
- openpyxl=2.6.1=py37_1
- openssl=1.1.1b=h7b6447c_1
- opt_einsum=3.1.0=py_0
- pandas=0.24.2=py37he6710b0_0
- paramiko=2.4.2=py37_0
- parso=0.3.4=py37_0
- pathlib2=2.3.3=py37_0
- patsy=0.5.1=py37_0
- pexpect=4.6.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=5.4.1=py37h34e0f95_0
- pip=19.0.3=py37_0
- ply=3.11=py37_0
- prompt_toolkit=2.0.9=py37_0
- protobuf=3.11.2=py37he6710b0_0
- psutil=5.6.1=py37h7b6447c_0
- psycopg2=2.7.6.1=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- py-xgboost=0.90=py37he6710b0_1
- py-xgboost-cpu=0.90=py37_1
- pyasn1=0.4.8=py_0
- pycparser=2.19=py_0
- pygments=2.3.1=py37_0
- pymongo=3.8.0=py37he6710b0_1
- pynacl=1.3.0=py37h7b6447c_0
- pyopenssl=19.0.0=py37_0
- pyparsing=2.3.1=py37_0
- pysocks=1.6.8=py37_0
- python=3.7.3=h0371630_0
- python-dateutil=2.8.0=py37_0
- python-editor=1.0.4=py_0
- pytorch=1.3.1=py3.7_cpu_0
- pytz=2018.9=py37_0
- pyyaml=5.1=py37h7b6447c_0
- pyzmq=18.0.0=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py37_0
- s3transfer=0.2.1=py37_0
- scikit-learn=0.20.3=py37hd81dba3_0
- scipy=1.2.1=py37h7c811a0_0
- setuptools=40.8.0=py37_0
- simplejson=3.16.0=py37h14c3975_0
- singledispatch=3.4.0.3=py37_0
- six=1.12.0=py37_0
- smmap2=2.0.5=py_0
- sqlite=3.27.2=h7b6447c_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py37h035aef0_0
- tabulate=0.8.3=py37_0
- tensorboard=1.15.0+db2=pyhb230dea_0
- tensorflow=1.15.0+db2=mkl_py37hc5fbf04_0
- tensorflow-base=1.15.0+db2=mkl_py37h2ae1e84_0
- tensorflow-estimator=1.15.1+db2=pyh2649769_0
- tensorflow-mkl=1.15.0+db2=h4fcabd2_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- torchvision=0.4.2=py37_cpu
- tornado=6.0.2=py37h7b6447c_0
- tqdm=4.31.1=py37_1
- traitlets=4.3.2=py37_0
- urllib3=1.24.1=py37_0
- virtualenv=16.0.0=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- websocket-client=0.56.0=py37_0
- werkzeug=0.14.1=py37_0
- wheel=0.33.1=py37_0
- wrapt=1.11.1=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- argparse==1.4.0
- databricks-cli==0.9.1
- deprecated==1.2.7
- docker==4.1.0
- fusepy==2.0.4
- gorilla==0.3.0
- horovod==0.18.2
- hyperopt==0.2.2.db1
- keras==2.2.5
- matplotlib==3.0.3
- mleap==0.8.1
- mlflow==1.5.0
- nose-exclude==0.5.0
- pyarrow==0.13.0
- querystring-parser==1.2.4
- seaborn==0.9.0
- tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml
Python em clusters de GPU
name: databricks-ml-gpu
channels:
- Databricks
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=1.0=gpu_0
- _tflow_select=2.1.0=gpu
- absl-py=0.8.1=py37_0
- asn1crypto=0.24.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_0
- blas=1.0=mkl
- boto=2.49.0=py37_0
- boto3=1.9.162=py_0
- botocore=1.12.163=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.1.23=0
- certifi=2019.3.9=py37_0
- cffi=1.12.2=py37h2e261b9_1
- chardet=3.0.4=py37_1003
- click=7.0=py_0
- cloudpickle=0.8.0=py37_0
- colorama=0.4.1=py_0
- configparser=3.7.4=py37_0
- cryptography=2.6.1=py37h1ba5d50_0
- cudatoolkit=10.0.130=0
- cudnn=7.6.4=cuda10.0_0
- cupti=10.0.130=0
- cycler=0.10.0=py37_0
- cython=0.29.6=py37he6710b0_0
- decorator=4.4.0=py37_1
- docutils=0.14=py37_0
- entrypoints=0.3=py37_0
- et_xmlfile=1.0.1=py37_0
- flask=1.0.2=py37_1
- freetype=2.9.1=h8a8886c_1
- future=0.17.1=py37_0
- gast=0.2.2=py37_0
- gitdb2=2.0.6=py_0
- gitpython=2.1.11=py37_0
- google-pasta=0.1.8=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- gunicorn=19.9.0=py37_0
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- html5lib=1.0.1=py_0
- icu=58.2=h9c2bf20_1
- idna=2.8=py37_0
- intel-openmp=2019.3=199
- ipykernel=5.1.0=py37h39e3cac_0
- ipython=7.4.0=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py_0
- jdcal=1.4=py37_0
- jedi=0.13.3=py37_0
- jinja2=2.10=py37_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.2.4=py37_0
- jupyter_core=4.4.0=py37_0
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.0.1=py37hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=8.2.0=hdf63c60_1
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.36=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.2=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.10=h2733197_2
- libxgboost=0.90=h688424c_0
- libxml2=2.9.9=hea5a465_1
- libxslt=1.1.33=h7d1a2b0_0
- llvmlite=0.28.0=py37hd408876_0
- lxml=4.3.2=py37hefd8a0e_0
- mako=1.0.10=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- mkl=2019.3=199
- mkl_fft=1.0.10=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- ncurses=6.1=he6710b0_1
- networkx=2.2=py37_1
- ninja=1.9.0=py37hfd86e86_0
- nose=1.3.7=py37_2
- numba=0.43.1=py37h962f231_0
- numpy=1.16.2=py37h7e9f1db_0
- numpy-base=1.16.2=py37hde5b4d6_0
- olefile=0.46=py_0
- openpyxl=2.6.1=py37_1
- openssl=1.1.1b=h7b6447c_1
- opt_einsum=3.1.0=py_0
- pandas=0.24.2=py37he6710b0_0
- paramiko=2.4.2=py37_0
- parso=0.3.4=py37_0
- pathlib2=2.3.3=py37_0
- patsy=0.5.1=py37_0
- pexpect=4.6.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=5.4.1=py37h34e0f95_0
- pip=19.0.3=py37_0
- ply=3.11=py37_0
- prompt_toolkit=2.0.9=py37_0
- protobuf=3.11.2=py37he6710b0_0
- psutil=5.6.1=py37h7b6447c_0
- psycopg2=2.7.6.1=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- py-xgboost=0.90=py37h688424c_0
- py-xgboost-gpu=0.90=py37h28bbb66_0
- pyasn1=0.4.8=py_0
- pycparser=2.19=py_0
- pygments=2.3.1=py37_0
- pymongo=3.8.0=py37he6710b0_1
- pynacl=1.3.0=py37h7b6447c_0
- pyopenssl=19.0.0=py37_0
- pyparsing=2.3.1=py37_0
- pysocks=1.6.8=py37_0
- python=3.7.3=h0371630_0
- python-dateutil=2.8.0=py37_0
- python-editor=1.0.4=py_0
- pytorch=1.3.1=py3.7_cuda10.0.130_cudnn7.6.3_0
- pytz=2018.9=py37_0
- pyyaml=5.1=py37h7b6447c_0
- pyzmq=18.0.0=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py37_0
- s3transfer=0.2.1=py37_0
- scikit-learn=0.20.3=py37hd81dba3_0
- scipy=1.2.1=py37h7c811a0_0
- setuptools=40.8.0=py37_0
- simplejson=3.16.0=py37h14c3975_0
- singledispatch=3.4.0.3=py37_0
- six=1.12.0=py37_0
- smmap2=2.0.5=py_0
- sqlite=3.27.2=h7b6447c_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py37h035aef0_0
- tabulate=0.8.3=py37_0
- tensorboard=1.15.0+db2=pyhb230dea_0
- tensorflow=1.15.0+db2=gpu_py37h9fd0ff8_0
- tensorflow-base=1.15.0+db2=gpu_py37hd56f5dd_0
- tensorflow-estimator=1.15.1+db2=pyh2649769_0
- tensorflow-gpu=1.15.0+db2=h0d30ee6_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- torchvision=0.4.2=py37_cu100
- tornado=6.0.2=py37h7b6447c_0
- tqdm=4.31.1=py37_1
- traitlets=4.3.2=py37_0
- urllib3=1.24.1=py37_0
- virtualenv=16.0.0=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- websocket-client=0.56.0=py37_0
- werkzeug=0.14.1=py37_0
- wheel=0.33.1=py37_0
- wrapt=1.11.1=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- argparse==1.4.0
- databricks-cli==0.9.1
- deprecated==1.2.7
- docker==4.1.0
- fusepy==2.0.4
- gorilla==0.3.0
- horovod==0.18.2
- hyperopt==0.2.2.db1
- keras==2.2.5
- matplotlib==3.0.3
- mleap==0.8.1
- mlflow==1.5.0
- nose-exclude==0.5.0
- pyarrow==0.13.0
- querystring-parser==1.2.4
- seaborn==0.9.0
- tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml-gpu
Pacotes Spark contendo módulos Python
Pacote Spark | Módulo Python | Versão |
---|---|---|
quadros gráficos | quadros gráficos | 0.7.0-db1-faísca2.4 |
faísca-aprendizagem profunda | Faísca | 1.5.0-db12-faísca2.4 |
tensorframes | tensorframes | 0.8.2-s_2.11 |
Bibliotecas R
As bibliotecas R são idênticas às bibliotecas R no Databricks Runtime 6.3.
Bibliotecas Java e Scala (cluster Scala 2.11)
Além das bibliotecas Java e Scala no Databricks Runtime 6.3, o Databricks Runtime 6.3 ML contém os seguintes JARs:
ID do Grupo | ID do Artefacto | Versão |
---|---|---|
com.databricks | faísca-aprendizagem profunda | 1.5.0-db12-faísca2.4 |
com.typesafe.akka | AKKA-actor_2,11 | 2.3.11 |
ml.combust.mleap | mleap-databricks-runtime_2.11 | 0.15.0 |
ml.dmlc | xgboost4j | 0.90 |
ml.dmlc | xgboost4j-faísca | 0.90 |
org.graphframes | graphframes_2.11 | 0.7.0-db1-faísca2.4 |
org.mlflow | mlflow-cliente | 1.4.0 |
org.tensorflow | libtensorflow | 1.15.0 |
org.tensorflow | libtensorflow_jni | 1.15.0 |
org.tensorflow | spark-tensorflow-connector_2.11 | 1.15.0 |
org.tensorflow | TensorFlow | 1.15.0 |
org.tensorframes | tensorframes | 0.8.2-s_2.11 |