Partilhar via


Exemplos de consulta de modelo Naive Bayes

Aplica-se a: SQL Server 2019 e anteriores do Analysis Services Azure Analysis Services Fabric/Power BI Premium

Importante

A mineração de dados foi preterida no SQL Server 2017 Analysis Services e agora foi descontinuada no SQL Server 2022 Analysis Services. A documentação não foi atualizada para recursos preteridos e descontinuados. Para saber mais, confira Compatibilidade com versões anteriores do Analysis Services.

Ao criar uma consulta para um modelo de mineração de dados, você pode criar uma consulta de conteúdo, que fornece detalhes de padrões descobertos em análises, ou uma consulta de previsão, que usa os padrões no modelo para fazer previsões para novos dados. Você também pode recuperar metadados sobre o modelo usando uma consulta no conjunto de linhas do esquema de mineração de dados. Esta seção explica como criar essas consultas para modelos baseados no algoritmo Naive Bayes da Microsoft.

Consultas de conteúdo

Obtendo metadados de modelo usando DMX

Recuperando um resumo dos dados de treinamento

Localizando mais informações sobre atributos

Usando procedimentos armazenados do sistema

Consultas de previsão

Prevendo resultados com o uso de uma consulta singleton

Obtendo previsões com valores de probabilidade e suporte

Prever associações

Localizando informações sobre um modelo Naive Bayes

O conteúdo de um modelo Naive Bayes fornece informações agregadas sobre a distribuição dos valores nos dados de treinamento. Você também pode recuperar informações sobre os metadados do modelo criando consultas no conjunto de linhas do esquema de mineração de dados.

Exemplo de consulta 1: Obtendo metadados do modelo usando instruções DMX

Ao consultar o conjunto de linhas do esquema de mineração de dados, você pode localizar metadados para o modelo. Isso pode incluir quando o modelo foi criado, quando o modelo foi processado pela última vez , o nome da estrutura de mineração em que o modelo se baseia e o nome das colunas usadas como o atributo previsível. Você também pode retornar os parâmetros que foram usados quando o modelo foi criado.

SELECT MODEL_CATALOG, MODEL_NAME, DATE_CREATED, LAST_PROCESSED,  
SERVICE_NAME, PREDICTION_ENTITY, FILTER  
FROM $system.DMSCHEMA_MINING_MODELS  
WHERE MODEL_NAME = 'TM_NaiveBayes_Filtered'  

Resultados do exemplo:

Linha Metadados
MODEL_CATALOG AdventureWorks
MODEL_NAME TM_NaiveBayes_Filtered
DATE_CREATED 3/1/2008 19:15
LAST_PROCESSED 3/2/2008 20:00
SERVICE_NAME Microsoft_Naive_Bayes
PREDICTION_ENTITY Bike Buyer,Yearly Income
FILTER [Region] = 'Europe' OR [Region] = 'North America'

O modelo usado para este exemplo se baseia no modelo Naive Bayes que você cria no Basic Data Mining Tutorial, mas foi modificado com a adição de um segundo atributo previsível e a aplicação de um filtro aos dados de treinamento.

Exemplo de consulta 2: Recuperando um resumo dos dados de treinamento

Em um modelo Naive Bayes, o nó de estatísticas marginais armazena informações agregadas sobre a distribuição dos valores nos dados de treinamento. Esse resumo é prático e você não precisa criar consultas SQL nos dados de treinamento para localizar as mesmas informações.

O exemplo a seguir usa uma consulta de conteúdo DMX para recuperar os dados do nó (NODE_TYPE = 24). Como as estatísticas são armazenadas em uma tabela aninhada, a palavra-chave FLATTENED é usada para facilitar a exibição dos resultados.

SELECT FLATTENED MODEL_NAME,  
(SELECT ATTRIBUTE_NAME, ATTRIBUTE_VALUE, [SUPPORT], [PROBABILITY], VALUETYPE FROM NODE_DISTRIBUTION) AS t  
FROM TM_NaiveBayes.CONTENT  
WHERE NODE_TYPE = 26  

Observação

Você deve colocar os nomes das colunas SUPPORT e PROBABILITY entre colchetes para distingui-los das palavras-chave MDX reservadas com os mesmos nomes.

Resultados parciais:

MODEL_NAME T.ATTRIBUTE_NAME t.ATTRIBUTE_VALUE t.SUPPORT t.PROBABILITY t.VALUETYPE
TM_NaiveBayes Bike Buyer Ausente 0 0 1
TM_NaiveBayes Bike Buyer 0 8869 0.507263784 4
TM_NaiveBayes Bike Buyer 1 8615 0.492736216 4
TM_NaiveBayes Gênero Ausente 0 0 1
TM_NaiveBayes Gênero F 8656 0.495081217 4
TM_NaiveBayes Gênero M 8828 0.504918783 4

Por exemplo, esses resultados informam o número de casos de treinamento para cada valor discreto (VALUETYPE = 4), junto com a probabilidade calculada, ajustada para valores ausentes (VALUETYPE = 1).

Para obter uma definição dos valores fornecidos na tabela NODE_DISTRIBUTION em um modelo Naive Bayes, consulte Conteúdo do modelo de mineração para modelos naive bayes (Analysis Services – Mineração de dados). Para obter mais informações sobre como os cálculos de suporte e probabilidade são afetados por valores ausentes, consulte Valores ausentes (Analysis Services – Mineração de Dados).

Exemplo de consulta 3: Localizando mais informações sobre atributos

Como um modelo Naive Bayes frequentemente contém informações complexas sobre as relações entre atributos diferentes, a maneira mais fácil de exibir essas relações é usar o Visualizador Naive Bayes da Microsoft. No entanto, você pode criar consultas DMX para retornar os dados.

O exemplo a seguir mostra como retornar informações do modelo sobre um atributo específico, Region.

SELECT NODE_TYPE, NODE_CAPTION,   
NODE_PROBABILITY, NODE_SUPPORT, MSOLAP_NODE_SCORE  
FROM TM_NaiveBayes.CONTENT  
WHERE ATTRIBUTE_NAME = 'Region'  

Esta consulta retorna dois tipos de nós: o nó que representa o atributo de entrada (NODE_TYPE = 10) e nós para cada valor do atributo (NODE_TYPE = 11). A legenda do nó é usada para identificar o nó, em vez do nome do nó, porque a legenda mostra o nome e o valor do atributo.

NODE_TYPE NODE_CAPTION NODE_PROBABILITY NODE_SUPPORT MSOLAP_NODE_SCORE NODE_TYPE
10 Comprador de Bicicletas –> Região 1 17484 84.51555875 10
11 Comprador de Bicicletas -> Região = Ausente 0 0 0 11
11 Comprador de Bicicletas -> Região = América do Norte 0.508236102 8886 0 11
11 Comprador de Bicicletas -> Região = Pacífico 0.193891558 3390 0 11
11 Comprador de Bicicletas -> Região = Europa 0.29787234 5208 0 11

Algumas das colunas armazenadas nos nós são iguais àquelas que você pode obter com base nos nós de estatísticas marginais, como a pontuação de probabilidade do nó e os valores de suporte do nó. No entanto, MSOLAP_NODE_SCORE é um valor especial fornecido apenas para os nós de atributo de entrada e indica a importância relativa desse atributo no modelo. Você pode ver grande parte das mesmas informações no painel Rede de Dependências do visualizador; no entanto, o visualizador não fornece pontuações.

A seguinte consulta retorna as pontuações de importância de todos os atributos no modelo:

SELECT NODE_CAPTION, MSOLAP_NODE_SCORE  
FROM TM_NaiveBayes.CONTENT  
WHERE NODE_TYPE = 10  
ORDER BY MSOLAP_NODE_SCORE DESC  

Resultados do exemplo:

NODE_CAPTION MSOLAP_NODE_SCORE
Comprador de Bicicletas –> Total de Filhos 181.3654836
Comprador de Bicicletas -> Distância Commute 179.8419482
Comprador de Bicicletas –> Educação em Inglês 156.9841928
Comprador de bicicletas -> Número de crianças em casa 111.8122599
Comprador de Bicicletas –> Região 84.51555875
Comprador de Bicicletas -> Estado Civil 23.13297354
Comprador de Bicicletas -> Ocupação em Inglês 2.832069191

Ao navegar no conteúdo do modelo no Visualizador de Árvore de Conteúdo Genérica da Microsoft, você terá uma noção melhor de quais estatísticas devem ser interessantes. Alguns exemplos simples foram demonstrados aqui; talvez você precise executar com mais frequência várias consultas ou armazenar os resultados e processá-los no cliente.

Exemplo de consulta 4: Usando procedimentos armazenados de sistema

Além de escrever suas próprias consultas de conteúdo, você pode usar alguns procedimentos armazenados de sistema do Analysis Services para explorar os resultados. Para usar um procedimento armazenado de sistema, use a palavra-chave CALL como prefixo do nome do procedimento:

CALL GetPredictableAttributes ('TM_NaiveBayes')  

Resultados parciais:

ATTRIBUTE_NAME NODE_UNIQUE_NAME
Bike Buyer 100000001

Observação

Esses procedimentos armazenados de sistema destinam-se à comunicação interna entre o servidor do Analysis Services e o cliente e só devem ser usados para conveniência durante o desenvolvimento e o teste de modelos de mineração. Quando criar consultas para um sistema de produção, você sempre deverá escrever suas próprias consultas usando DMX.

Para obter mais informações sobre procedimentos armazenados do sistema do Analysis Services, consulte Procedimentos armazenados de mineração de dados (Analysis Services – Mineração de dados).

Usando um modelo Naive Bayes para fazer previsões

O algoritmo Naive Bayes da Microsoft geralmente é menos usado para previsão do que para exploração das relações entre os atributos de entrada e previsíveis. No entanto, o modelo dá suporte ao uso de funções de previsão para previsão e associação.

Exemplo de consulta 5: Resultados de previsão que usam uma consulta singleton

A consulta a seguir usa uma consulta singleton para fornecer um novo valor e prever, com base no modelo, se um cliente com essas características provavelmente comprará um modelo. A maneira mais fácil de criar uma consulta singleton em um modelo de regressão é usando a caixa de diálogo Entrada de Consulta Singleton . Por exemplo, você pode criar a consulta DMX a seguir selecionando o modelo TM_NaiveBayes , escolhendo Consulta Singletone selecionando valores nas listas suspensas para [Commute Distance] e Gender.

SELECT  
  Predict([TM_NaiveBayes].[Bike Buyer])  
FROM  
  [TM_NaiveBayes]  
NATURAL PREDICTION JOIN  
(SELECT '5-10 Miles' AS [Commute Distance],  
  'F' AS [Gender]) AS t  

Resultados do exemplo:

Expression
0

A função de previsão retorna o valor mais provável, nesse caso, 0, o que significa que esse tipo de cliente provavelmente não comprará uma bicicleta.

Exemplo de consulta 6: Obtendo previsões com valores de probabilidade e suporte

Além de prever um resultado, com frequência você deseja saber o quão sólida é a previsão. A consulta a seguir usa a mesma consulta singleton que o exemplo anterior, mas adiciona a função de previsão , PredictHistogram (DMX), para retornar uma tabela aninhada que contém estatísticas com suporte à previsão.

SELECT  
  Predict([TM_NaiveBayes].[Bike Buyer]),  
  PredictHistogram([TM_NaiveBayes].[Bike Buyer])  
FROM  
  [TM_NaiveBayes]  
NATURAL PREDICTION JOIN  
(SELECT '5-10 Miles' AS [Commute Distance],  
  'F' AS [Gender]) AS t  

Resultados do exemplo:

Bike Buyer $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY $VARIANCE $STDEV
0 10161.5714 0.581192599 0.010530981 0 0
1 7321.428768 0.418750215 0.008945684 0 0
0.999828444 5.72E-05 5.72E-05 0 0

A linha final na tabela mostra os ajustes para dar suporte e probabilidade ao valor ausente. Os valores de variação e desvio padrão sempre são 0, porque modelos Naive Bayes não podem modelar valores contínuos.

Exemplo de consulta 7: Prevendo associações

O algoritmo Naive Bayes da Microsoft poderá ser usado para análise de associação, se a estrutura de mineração contiver uma tabela aninhada com o atributo previsível como a chave. Por exemplo, você pode criar um modelo Naive Bayes usando a estrutura de mineração criada na Lição 3: Criando um cenário de cesta de mercado (Tutorial de mineração de dados intermediário) do tutorial de mineração de dados. O modelo usado neste exemplo foi modificado para adicionar informações sobre renda e região do cliente na tabela de casos.

O exemplo de consulta a seguir mostra uma consulta singleton que prevê produtos relacionados às compras do produto, 'Road Tire Tube'. Você pode usar essas informações para recomendar produtos a um tipo de cliente específico.

SELECT   PredictAssociation([Association].[v Assoc Seq Line Items])  
FROM [Association_NB]  
NATURAL PREDICTION JOIN  
(SELECT 'High' AS [Income Group],  
  'Europe' AS [Region],  
  (SELECT 'Road Tire Tube' AS [Model])   
AS [v Assoc Seq Line Items])   
AS t  

Resultados parciais:

Modelar
Women's Mountain Shorts
Water Bottle
Touring-3000
Touring-2000
Touring-1000

Lista de funções

Todos os algoritmos da Microsoft dão suporte a um conjunto comum de funções. No entanto, o algoritmo Microsoft Naive Bayes dá suporte às funções adicionais listadas na tabela a seguir.

Função de previsão Uso
IsDescendant (DMX) Determina se um nó é um filho de outro nó no modelo.
Predict (DMX) Retorna um valor previsto ou conjunto de valores de uma coluna especificada.
PredictAdjustedProbability (DMX) Retorna a probabilidade ponderada.
PredictAssociation (DMX) Prevê associação de membro em um conjunto de dados associativo.
PredictNodeId (DMX) Retorna Node_ID para cada caso.
PredictProbability (DMX) Retorna a probabilidade para o valor previsto.
PredictSupport (DMX) Retorna o valor de suporte para um estado especificado.

Para ver a sintaxe de funções específicas, consulte Referência de função DMX (Extensões de Mineração de Dados).

Consulte Também

Referência técnica do algoritmo Microsoft Naive Bayes
Referência técnica do algoritmo Naive Bayes da Microsoft
Conteúdo do modelo de mineração para modelos Naive Bayes (Analysis Services – Mineração de Dados)