Compartilhar via


Carimbo de data/hora do pacote

Introdução

Muitas NICs (placas de adaptador de rede ou adaptadores de rede) podem gerar um carimbo de data/hora em seu hardware sempre que um pacote é recebido ou transmitido. O carimbo de data/hora é gerado usando o próprio relógio de hardware da NIC. Esse recurso é usado em particular pelo PROTOCOLOP (Precision Time Protocol), que é um protocolo de sincronização de tempo. O PTP provisiona para usar esses carimbos de data/hora de hardware dentro do próprio protocolo.

Os carimbos de data/hora podem, por exemplo, ser usados para calcular o tempo gasto por um pacote dentro da pilha de rede do computador antes de serem enviados ou recebidos da transmissão. Esses cálculos podem ser usados pelo PTP para melhorar a precisão da sincronização de tempo. O suporte ao carimbo de data/hora do pacote de adaptadores de rede é voltado às vezes especificamente para o protocolo PTP. Em outros casos, um suporte mais geral é fornecido.

As APIs de carimbo de data/hora dão ao Windows a capacidade de dar suporte à funcionalidade de carimbo de data/hora de hardware dos adaptadores de rede para o protocolo PTP versão 2. No geral, os recursos incluem fornecer a capacidade de drivers de adaptadores de rede para dar suporte a carimbos de data/hora e para aplicativos de modo de usuário consumirem carimbos de data/hora associados a pacotes por meio do Windows Sockets (consulte Carimbo de data/hora do Winsock). Além disso, a capacidade de gerar carimbos de data/hora de software também está disponível, o que permite que um driver de rede gere carimbos de data/hora no software. Esses carimbos de data/hora de software são gerados por drivers NIC usando o equivalente do modo kernel de QueryPerformanceCounter (QPC). No entanto, não há suporte para ter carimbos de data/hora de hardware e software habilitados juntos.

Em particular, as APIs de carimbo de data/hora do pacote do Auxiliar de Protocolo ip (Auxiliar de Ip) descritas neste tópico fornecem a capacidade de aplicativos de modo de usuário determinarem a funcionalidade de carimbo de data/hora de um adaptador de rede e consultar carimbos de data/hora do adaptador de rede na forma de carimbos de data/hora cruzados (descritos abaixo).

Suporte ao Protocolo de Tempo de Precisão versão 2

Conforme mencionado, o main objetivo do suporte ao carimbo de data/hora no Windows é dar suporte ao protocolo PTPv2 (Precision Time Protocol versão 2). Dentro de PTPv2, nem todas as mensagens precisam de um carimbo de data/hora. Em particular, as mensagens de evento PTP usam carimbos de data/hora. Atualmente, o suporte está no escopo de PTPv2 no UDP (User Datagram Protocol). Não há suporte para PTP sobre ethernet bruta.

Há suporte para carimbo de data/hora para PTPv2 que opera no modo de duas etapas . 2 etapa refere-se ao modo no qual os carimbos de data/hora reais nos pacotes PTP não são gerados em tempo real no hardware, mas são recuperados do hardware e transmitidos como mensagens separadas (por exemplo, usando uma mensagem de acompanhamento).

Em resumo, você pode usar as APIs de carimbo de data/hora do pacote auxiliar de PROTOCOLO (Auxiliar de IP), juntamente com o suporte de carimbo de data/hora do Winsock, em um aplicativo PTPv2 para melhorar sua precisão de sincronização de tempo.

Recuperando os recursos de carimbo de data/hora de um adaptador de rede

Um aplicativo como um serviço de sincronização de horário PTP precisa determinar a funcionalidade de carimbo de data/hora de um adaptador de rede. Usando os recursos recuperados, o aplicativo pode decidir se deseja ou não usar carimbos de data/hora.

Mesmo que um adaptador de rede suporte a carimbos de data/hora, é necessário manter a capacidade desativada por padrão. Um adaptador ativa o carimbo de data/hora quando instruído a fazer isso. O Windows fornece APIs para um aplicativo recuperar a funcionalidade do hardware, bem como quais recursos estão ativados.

Para recuperar os recursos de carimbo de data/hora com suporte de um adaptador de rede, chame a função GetInterfaceSupportedTimestampCapabilities , fornecendo o LUID (identificador exclusivo local) do adaptador de rede e, em troca, recuperando os recursos de carimbo de data/hora com suporte na forma de um objeto INTERFACE_TIMESTAMP_CAPABILITIES .

O código retornado de GetInterfaceSupportedTimestampCapabilities indica se a chamada foi ou não bem-sucedida e se um valor de INTERFACE_TIMESTAMP_CAPABILITIES preenchido foi recuperado ou não.

Para recuperar os recursos de carimbo de data/hora atualmente habilitados de um adaptador de rede, chame a função GetInterfaceActiveTimestampCapabilities , fornecendo o LUID (identificador exclusivo local) do adaptador de rede e, em troca, recuperando os recursos de carimbo de data/hora habilitados na forma de um objeto INTERFACE_TIMESTAMP_CAPABILITIES .

Novamente, o código retornado de GetInterfaceActiveTimestampCapabilities indica êxito ou falha e se um valor de INTERFACE_TIMESTAMP_CAPABILITIES válido foi recuperado ou não.

Os adaptadores de rede podem dar suporte a uma variedade de recursos de carimbo de data/hora. Por exemplo, alguns adaptadores podem carimbo de data/hora de cada pacote durante o envio e recebimento, enquanto outros dão suporte apenas a pacotes PTPv2. A estrutura INTERFACE_TIMESTAMP_CAPABILITIES descreve os recursos exatos aos quais um adaptador de rede dá suporte.

Recuperando carimbos de data/hora cruzados de um adaptador de rede

Ao usar carimbos de data/hora de hardware, um aplicativo PTP precisa estabelecer uma relação (por exemplo, usando técnicas matemáticas apropriadas) entre o relógio de hardware do adaptador de rede e um relógio do sistema. Isso é necessário para que um valor que represente uma hora na unidade de um relógio possa ser convertido na unidade de outro relógio. Carimbos de data/hora cruzados são fornecidos para essa finalidade, e seu aplicativo pode amostrar carimbos de data/hora cruzados periodicamente para estabelecer essa relação.

Para fazer isso, chame a função CaptureInterfaceHardwareCrossTimestamp , fornecendo o LUID (identificador exclusivo local) do adaptador de rede e, em troca, recuperando o carimbo de data/hora do adaptador de rede na forma de um objeto INTERFACE_HARDWARE_CROSSTIMESTAMP .

Notificações de alteração da funcionalidade de carimbo de data/hora

Para ser notificado se os recursos de carimbo de data/hora de um adaptador de rede forem alterados, chame a função RegisterInterfaceTimestampConfigChange , fornecendo um ponteiro para a função de retorno de chamada que você implementou, juntamente com um contexto opcional alocado pelo chamador.

RegisterInterfaceTimestampConfigChange retorna um identificador que você pode passar posteriormente para UnregisterInterfaceTimestampConfigChange para cancelar o registro da função de retorno de chamada.

Exemplo de código 1 – recuperando recursos de carimbo de data/hora e carimbos de data/hora cruzados

// main.cpp in a Console App project.

#include <stdio.h>
#include <winsock2.h>
#include <iphlpapi.h>
#pragma comment(lib, "Iphlpapi")

BOOL
IsPTPv2HardwareTimestampingSupportedForIPv4(PINTERFACE_TIMESTAMP_CAPABILITIES timestampCapabilities)
{
    // Supported if both receive and transmit side support is present
    if (((timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv4EventMessageReceive) ||
         (timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv4AllMessageReceive) ||
         (timestampCapabilities->HardwareCapabilities.AllReceive))
         &&
        ((timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv4EventMessageTransmit) ||
         (timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv4AllMessageTransmit) ||
         (timestampCapabilities->HardwareCapabilities.TaggedTransmit) ||
         (timestampCapabilities->HardwareCapabilities.AllTransmit)))
    {
        return TRUE;
    }

    return FALSE;
}

BOOL
IsPTPv2HardwareTimestampingSupportedForIPv6(PINTERFACE_TIMESTAMP_CAPABILITIES timestampCapabilities)
{
    // Supported if both receive and transmit side support is present
    if (((timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv6EventMessageReceive) ||
         (timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv6AllMessageReceive) ||
         (timestampCapabilities->HardwareCapabilities.AllReceive))
         &&
        ((timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv6EventMessageTransmit) ||
         (timestampCapabilities->HardwareCapabilities.PtpV2OverUdpIPv6AllMessageTransmit) ||
         (timestampCapabilities->HardwareCapabilities.TaggedTransmit) ||
         (timestampCapabilities->HardwareCapabilities.AllTransmit)))
    {
        return TRUE;
    }

    return FALSE;
}

enum SupportedTimestampType
{
    TimestampTypeNone = 0,
    TimestampTypeSoftware = 1,
    TimestampTypeHardware = 2
};

// This function checks and returns the supported timestamp capabilities for an interface for
// a PTPv2 application
SupportedTimestampType
CheckActiveTimestampCapabilitiesForPtpv2(NET_LUID interfaceLuid)
{
    DWORD result = NO_ERROR;
    INTERFACE_TIMESTAMP_CAPABILITIES timestampCapabilities;
    SupportedTimestampType supportedType = TimestampTypeNone;

    result = GetInterfaceActiveTimestampCapabilities(
                 &interfaceLuid,
                 &timestampCapabilities);
    if (result != NO_ERROR)
    {
        printf("Error retrieving hardware timestamp capabilities: %d\n", result);
        goto Exit;
    }

    if (IsPTPv2HardwareTimestampingSupportedForIPv4(&timestampCapabilities) &&
        IsPTPv2HardwareTimestampingSupportedForIPv6(&timestampCapabilities))
    {
        supportedType = TimestampTypeHardware;
        goto Exit;
    }
    else
    {
        if ((timestampCapabilities.SoftwareCapabilities.AllReceive) &&
            ((timestampCapabilities.SoftwareCapabilities.AllTransmit) ||
             (timestampCapabilities.SoftwareCapabilities.TaggedTransmit)))
        {
            supportedType = TimestampTypeSoftware;
        }
    }

Exit:
    return supportedType;
}

// Helper function which does the correlation between hardware and system clock
// using mathematical techniques
void ComputeCorrelationOfHardwareAndSystemTimestamps(INTERFACE_HARDWARE_CROSSTIMESTAMP *crossTimestamp);

// An application would call this function periodically to gather a set 
// of matching timestamps for use in converting hardware timestamps to
// system timestamps
DWORD
RetrieveAndProcessCrossTimestamp(NET_LUID interfaceLuid)
{
    DWORD result = NO_ERROR;
    INTERFACE_HARDWARE_CROSSTIMESTAMP crossTimestamp;

    result = CaptureInterfaceHardwareCrossTimestamp(
                 &interfaceLuid,
                 &crossTimestamp);
    if (result != NO_ERROR)
    {
        printf("Error retrieving cross timestamp for the interface: %d\n", result);
        goto Exit;
    }

    // Process crossTimestamp further to create a relation between the hardware clock
    // of the NIC and the QPC values using appropriate mathematical techniques
    ComputeCorrelationOfHardwareAndSystemTimestamps(&crossTimestamp);

Exit:
    return result;
}

int main()
{
}

Exemplo de código 2 – registro para notificações de alteração de funcionalidade de carimbo de data/hora

Este exemplo mostra como seu aplicativo pode usar carimbos de data/hora de ponta a ponta.

// main.cpp in a Console App project.

#include <stdlib.h>
#include <stdio.h>
#include <winsock2.h>
#include <mswsock.h>
#include <iphlpapi.h>
#include <mstcpip.h>
#pragma comment(lib, "Ws2_32")
#pragma comment(lib, "Iphlpapi")

// Globals and function declarations used by the application.
// The sample functions and skeletons demonstrate:
// - Checking timestamp configuration for an interface to determine if timestamping can be used
// - If timestamping is enabled, starts tracking changes in timestamp configuration
// - Performing correlation between hardware and system timestamps using cross timestamps
//   on a separate thread depending on the timestamp type configured
// - Receiving a packet and computing the latency between when the timestamp
//   was generated on packet reception, and when the packet was received by
//   the application through the socket
// The sample tries to demonstrate how an application could use timestamps. It is not thread safe 
// and does not do exhaustive error checking.
// Lot of the functions are provided as skeletons, or only declared and invoked
// but are not defined. It is up to
// the application to implement these suitably.

// An application could use the functions below by e.g.
// - Call InitializeTimestampingForInterface for the interface it wants to track for timestamping capability.
// - Call EstimateReceiveLatency to estimate the receive latency of a packet depending on the timestamp 
//   type configured for the interface.

enum SupportedTimestampType
{
    TimestampTypeNone = 0,
    TimestampTypeSoftware = 1,
    TimestampTypeHardware = 2
};

// interfaceBeingTracked is the interface the PTPv2 application
// intends to use for timestamping purpose.
wchar_t* interfaceBeingTracked;

// The active timestamping type determined for
// interfaceBeingTracked.
SupportedTimestampType timestampTypeEnabledForInterface;

HANDLE correlationThread;
HANDLE threadStopEvent;
HIFTIMESTAMPCHANGE TimestampChangeNotificationHandle = NULL;

// Function from sample above to check if an interface supports timestamping for PTPv2.
SupportedTimestampType CheckActiveTimestampCapabilitiesForPtpv2(NET_LUID interfaceLuid);

// Function from sample above to retrieve cross timestamps and process them further.
DWORD RetrieveAndProcessCrossTimestamp(NET_LUID interfaceLuid);

// Helper function which registers for timestamp configuration changes.
DWORD RegisterTimestampChangeNotifications();

// Callback function which is invoked when timestamp configuration changes
// for some network interface.
INTERFACE_TIMESTAMP_CONFIG_CHANGE_CALLBACK TimestampConfigChangeCallback;

// Function which does the correlation between hardware and system clock
// using mathematical techniques. It is periodically invoked and provided
// a sample of cross timestamp to compute a correlation.
void ComputeCorrelationOfHardwareAndSystemTimestamps(INTERFACE_HARDWARE_CROSSTIMESTAMP *crossTimestamp);

// Helper function which converts a hardware timestamp from the NIC clock
// to system timestamp (QPC) values. It is assumed that this works together
// with the ComputeCorrelationOfHardwareAndSystemTimestamps function
// to derive the correlation.
ULONG64 ConvertHardwareTimestampToQpc(ULONG64 HardwareTimestamp);

// Start function of thread which periodically samples
// cross timestamps to correlate hardware and software timestamps.
DWORD WINAPI CorrelateHardwareAndSystemTimestamps(LPVOID);

// Helper function which starts a new thread at CorrelateHardwareAndSystemTimestamps.
DWORD StartCorrelatingHardwareAndSytemTimestamps();

// Helper function which restarts correlation when some change is detected.
DWORD RestartCorrelatingHardwareAndSystemTimestamps();

// Stops the correlation thread.
DWORD StopCorrelatingHardwareAndSystemTimestamps();

DWORD
FindInterfaceFromFriendlyName(wchar_t* friendlyName, NET_LUID* interfaceLuid)
{
    DWORD result = 0;
    ULONG flags = 0;
    ULONG outBufLen = 0;
    PIP_ADAPTER_ADDRESSES pAddresses = NULL;
    PIP_ADAPTER_ADDRESSES currentAddresses = NULL;

    result = GetAdaptersAddresses(0,
        flags,
        NULL,
        pAddresses,
        &outBufLen);
    if (result == ERROR_BUFFER_OVERFLOW)
    {
        pAddresses = (PIP_ADAPTER_ADDRESSES)malloc(outBufLen);

        result = GetAdaptersAddresses(0,
            flags,
            NULL,
            pAddresses,
            &outBufLen);
        if (result != NO_ERROR)
        {
            goto Done;
        }
    }
    else if (result != NO_ERROR)
    {
        goto Done;
    }

    currentAddresses = pAddresses;
    while (currentAddresses != NULL)
    {
        if (wcscmp(friendlyName, currentAddresses->FriendlyName) == 0)
        {
            result = ConvertInterfaceIndexToLuid(currentAddresses->IfIndex, interfaceLuid);
            goto Done;
        }

        currentAddresses = currentAddresses->Next;
    }

    result = ERROR_NOT_FOUND;

Done:

    if (pAddresses != NULL)
    {
        free(pAddresses);
    }

    return result;
}

// This function checks if an interface is suitable for
// timestamping for PTPv2. If so, it registers for timestamp
// configuration changes and initializes some globals.
// If hardware  timestamping is enabled it also starts
// correlation thread.
DWORD
InitializeTimestampingForInterface(wchar_t* friendlyName)
{
    DWORD error;
    SupportedTimestampType supportedType = TimestampTypeNone;

    NET_LUID interfaceLuid;

    error = FindInterfaceFromFriendlyName(friendlyName, &interfaceLuid);
    if (error != 0)
    {
        return error;
    }

    supportedType = CheckActiveTimestampCapabilitiesForPtpv2(interfaceLuid);

    if (supportedType != TimestampTypeNone)
    {
        error = RegisterTimestampChangeNotifications();
        if (error != NO_ERROR)
        {
            return error;
        }

        if (supportedType == TimestampTypeHardware)
        {
            threadStopEvent = CreateEvent(
                NULL,
                FALSE,
                FALSE,
                NULL
            );
            if (threadStopEvent == NULL)
            {
                return GetLastError();
            }            

            error = StartCorrelatingHardwareAndSytemTimestamps();
            if (error != 0)
            {
                return error;
            }
        }

        interfaceBeingTracked = friendlyName;
        timestampTypeEnabledForInterface = supportedType;

        return error;
    }

    return ERROR_NOT_SUPPORTED;
}

DWORD
RegisterTimestampChangeNotifications()
{
    DWORD retcode = NO_ERROR;

    // Register with NULL context
    retcode = RegisterInterfaceTimestampConfigChange(TimestampConfigChangeCallback, NULL, &TimestampChangeNotificationHandle);
    if (retcode != NO_ERROR)
    {
        printf("Error when calling RegisterIfTimestampConfigChange %d\n", retcode);
    }

    return retcode;
}

// The callback invoked when change in some interface’s timestamping configuration
// happens. The callback takes appropriate action based on the new capability of the
// interface. The callback assumes that there is only 1 NIC. If multiple NICs are being
// tracked for timestamping then the application would need to check all of them.
VOID
WINAPI
TimestampConfigChangeCallback(
    _In_ PVOID /*CallerContext*/
    )
{
    SupportedTimestampType supportedType;

    NET_LUID interfaceLuid;
    DWORD error;

    error = FindInterfaceFromFriendlyName(interfaceBeingTracked, &interfaceLuid);
    if (error != NO_ERROR)
    {
        if (timestampTypeEnabledForInterface == TimestampTypeHardware)
        {
            StopCorrelatingHardwareAndSystemTimestamps();
            timestampTypeEnabledForInterface = TimestampTypeNone;
        }
        return;
    }

    supportedType = CheckActiveTimestampCapabilitiesForPtpv2(interfaceLuid);

    if ((supportedType == TimestampTypeHardware) &&
        (timestampTypeEnabledForInterface == TimestampTypeHardware))
    {
        // NIC could have been restarted, restart the correlation between hardware and 
        // system timestamps.
        RestartCorrelatingHardwareAndSystemTimestamps();
    }
    else if (supportedType == TimestampTypeHardware)
    {
        // Start thread correlating hardware and software timestamps
        StartCorrelatingHardwareAndSytemTimestamps();
    }
    else if (supportedType != TimestampTypeHardware)
    {
        // Hardware timestamps are not enabled, stop correlation
        StopCorrelatingHardwareAndSystemTimestamps();
    }

    timestampTypeEnabledForInterface = supportedType;
}

DWORD 
StartCorrelatingHardwareAndSytemTimestamps()
{
    // Create a new thread which starts at CorrelateHardwareAndSoftwareTimestamps
    correlationThread = CreateThread(
        NULL,
        0,
        CorrelateHardwareAndSystemTimestamps,
        NULL,
        0,
        NULL); 

    if (correlationThread == NULL)
    {
        return GetLastError();
    }
}

// Thread which periodically invokes functions to 
// sample cross timestamps and use them to compute
// correlation between hardware and system timestamps.
DWORD WINAPI
CorrelateHardwareAndSystemTimestamps(LPVOID /*lpParameter*/)
{
    DWORD error;
    NET_LUID interfaceLuid;
    DWORD result;

    result = FindInterfaceFromFriendlyName(interfaceBeingTracked, &interfaceLuid);
    if (result != 0)
    {
        return result;
    }

    while (TRUE)
    {
        error = RetrieveAndProcessCrossTimestamp(interfaceLuid);

        // Sleep and repeat till the thread gets a signal to stop
        result = WaitForSingleObject(threadStopEvent, 5000);
        if (result != WAIT_TIMEOUT)
        {
            if (result == WAIT_OBJECT_0)
            {
                return 0;
            }
            else if (result == WAIT_FAILED)            
            {
                return GetLastError();
            }

            return result;
        }
    }
}

DWORD
StopCorrelatingHardwareAndSystemTimestamps()
{
    SetEvent(threadStopEvent);
    return 0;
}

// Function which receives a packet and estimates the latency between the 
// point at which receive timestamp (of appropriate type) was generated
// and when the packet was received in the app through the socket.
// The sample assumes that there is only 1 NIC in the system. This is the NIC which is tracked through
// interfaceBeingTracked for correlation purpose, and through which packets are being
// received by the socket.
// The recvmsg parameter is of type LPFN_WSARECVMSG and an application can
// retrieve it by issuing WSAIoctl
// with SIO_GET_EXTENSION_FUNCTION_POINTER control
// and WSAID_WSARECVMSG. Please refer to msdn.
void EstimateReceiveLatency(SOCKET sock, LPFN_WSARECVMSG recvmsg)
{
    DWORD numBytes;
    INT error;
    CHAR data[512];
    CHAR control[WSA_CMSG_SPACE(sizeof(UINT64))] = { 0 };
    WSABUF dataBuf;
    WSABUF controlBuf;
    WSAMSG wsaMsg;
    UINT64 socketTimestamp = 0;
    ULONG64 appLevelTimestamp;
    ULONG64 packetReceivedTimestamp;

    dataBuf.buf = data;
    dataBuf.len = sizeof(data);
    controlBuf.buf = control;
    controlBuf.len = sizeof(control);
    wsaMsg.name = NULL;
    wsaMsg.namelen = 0;
    wsaMsg.lpBuffers = &dataBuf;
    wsaMsg.dwBufferCount = 1;
    wsaMsg.Control = controlBuf;
    wsaMsg.dwFlags = 0;

    // Configure rx timestamp reception.
    TIMESTAMPING_CONFIG config = { 0 };
    config.Flags |= TIMESTAMPING_FLAG_RX;
    error =
        WSAIoctl(
            sock,
            SIO_TIMESTAMPING,
            &config,
            sizeof(config),
            NULL,
            0,
            &numBytes,
            NULL,
            NULL);
    if (error == SOCKET_ERROR)
    {
        printf("WSAIoctl failed %d\n", WSAGetLastError());
        return;
    }

    error =
        recvmsg(
            sock,
            &wsaMsg,
            &numBytes,
            NULL,
            NULL);
    if (error == SOCKET_ERROR)
    {
        printf("recvmsg failed %d\n", WSAGetLastError());
        return;
    }

    if (timestampTypeEnabledForInterface != TimestampTypeNone)
    {
        // Capture system timestamp (QPC) upon message reception.
        LARGE_INTEGER t1;
        QueryPerformanceCounter(&t1);
        appLevelTimestamp = t1.QuadPart;

        printf("received packet\n");

        // Look for socket rx timestamp returned via control message.
        BOOLEAN retrievedTimestamp = FALSE;
        PCMSGHDR cmsg = WSA_CMSG_FIRSTHDR(&wsaMsg);
        while (cmsg != NULL)
        {
            if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SO_TIMESTAMP)
            {
                socketTimestamp = *(PUINT64)WSA_CMSG_DATA(cmsg);
                retrievedTimestamp = TRUE;
                break;
            }
            cmsg = WSA_CMSG_NXTHDR(&wsaMsg, cmsg);
        }

        if (retrievedTimestamp)
        {
            // Compute socket receive path latency.
            LARGE_INTEGER clockFrequency;
            ULONG64 elapsedMicroseconds;

            if (timestampTypeEnabledForInterface == TimestampTypeHardware)
            {
                packetReceivedTimestamp = ConvertHardwareTimestampToQpc(socketTimestamp);
            }
            else
            {
                packetReceivedTimestamp = socketTimestamp;
            }
        
            QueryPerformanceFrequency(&clockFrequency);

            // Compute socket receive path latency.
            elapsedMicroseconds = appLevelTimestamp - packetReceivedTimestamp;
            elapsedMicroseconds *= 1000000;
            elapsedMicroseconds /= clockFrequency.QuadPart;
            printf("RX latency estimation: %lld microseconds\n",
                 elapsedMicroseconds);
        }
        else
        {
            printf("failed to retrieve RX timestamp\n");
        }
    }
}

int main()
{
}