Compartilhar via


Histórico de chat

O objeto de histórico de bate-papo é usado para manter um registro de mensagens em uma sessão de bate-papo. Ele é usado para armazenar mensagens de diferentes autores, como usuários, assistentes, ferramentas ou o sistema. Como o principal mecanismo para enviar e receber mensagens, o objeto de histórico de bate-papo é essencial para manter o contexto e a continuidade em uma conversa.

Criação de um objeto de histórico de bate-papo

Um objeto de histórico de bate-papo é uma lista oculta, facilitando a criação e a adição de mensagens.

using Microsoft.SemanticKernel.ChatCompletion;

// Create a chat history object
ChatHistory chatHistory = [];

chatHistory.AddSystemMessage("You are a helpful assistant.");
chatHistory.AddUserMessage("What's available to order?");
chatHistory.AddAssistantMessage("We have pizza, pasta, and salad available to order. What would you like to order?");
chatHistory.AddUserMessage("I'd like to have the first option, please.");
# Create a chat history object
chat_history = ChatHistory()

chat_history.add_system_message("You are a helpful assistant.")
chat_history.add_user_message("What's available to order?")
chat_history.add_assistant_message("We have pizza, pasta, and salad available to order. What would you like to order?")
chat_history.add_user_message("I'd like to have the first option, please.")
import com.microsoft.semantickernel.services.chatcompletion.ChatHistory;

// Create a chat history object
ChatHistory chatHistory = new ChatHistory();

chatHistory.addSystemMessage("You are a helpful assistant.");
chatHistory.addUserMessage("What's available to order?");
chatHistory.addAssistantMessage("We have pizza, pasta, and salad available to order. What would you like to order?");
chatHistory.addUserMessage("I'd like to have the first option, please.");

Adição de mensagens mais avançadas a um histórico de bate-papo

A maneira mais fácil de adicionar mensagens a um objeto de histórico de bate-papo é usar os métodos acima. No entanto, você também pode adicionar mensagens manualmente criando um novo ChatMessage objeto. Isso permite que você forneça informações adicionais, como nomes e conteúdo de imagens.

using Microsoft.SemanticKernel.ChatCompletion;

// Add system message
chatHistory.Add(
    new() {
        Role = AuthorRole.System,
        Content = "You are a helpful assistant"
    }
);

// Add user message with an image
chatHistory.Add(
    new() {
        Role = AuthorRole.User,
        AuthorName = "Laimonis Dumins",
        Items = [
            new TextContent { Text = "What available on this menu" },
            new ImageContent { Uri = new Uri("https://example.com/menu.jpg") }
        ]
    }
);

// Add assistant message
chatHistory.Add(
    new() {
        Role = AuthorRole.Assistant,
        AuthorName = "Restaurant Assistant",
        Content = "We have pizza, pasta, and salad available to order. What would you like to order?"
    }
);

// Add additional message from a different user
chatHistory.Add(
    new() {
        Role = AuthorRole.User,
        AuthorName = "Ema Vargova",
        Content = "I'd like to have the first option, please."
    }
);
from semantic_kernel.contents.chat_history import ChatHistory
from semantic_kernel.contents import ChatMessageContent, TextContent, ImageContent
from semantic_kernel.contents.utils.author_role import AuthorRole

# Add system message
chat_history.add_message(
    ChatMessage(
        role=AuthorRole.System,
        content="You are a helpful assistant"
    )
)

# Add user message with an image
chat_history.add_message(
    ChatMessageContent(
        role=AuthorRole.USER,
        name="Laimonis Dumins",
        items=[
            TextContent(text="What available on this menu"),
            ImageContent(uri="https://example.com/menu.jpg")
        ]
    )
)

# Add assistant message
chat_history.add_message(
    ChatMessageContent(
        role=AuthorRole.ASSISTANT,
        name="Restaurant Assistant",
        content="We have pizza, pasta, and salad available to order. What would you like to order?"
    )
)

# Add additional message from a different user
chat_history.add_message(
    ChatMessageContent(
        role=AuthorRole.USER,
        name="Ema Vargova",
        content="I'd like to have the first option, please."
    )
)
import com.microsoft.semantickernel.services.chatcompletion.message.ChatMessageImageContent;
import com.microsoft.semantickernel.services.chatcompletion.message.ChatMessageTextContent;

// Add system message
chatHistory.addSystemMessage(
    "You are a helpful assistant"
);

// Add user message with an image
chatHistory.addUserMessage(
    "What available on this menu"
);

chatHistory.addMessage(
    ChatMessageImageContent.builder()
            .withImageUrl("https://example.com/menu.jpg")
            .build()
);

// Add assistant message
chatHistory.addAssistantMessage(
    "We have pizza, pasta, and salad available to order. What would you like to order?"
);

// Add additional message from a different user
chatHistory.addUserMessage(
    "I'd like to have the first option, please."
);

Simulando chamadas de função

Além das funções de usuário, assistente e sistema, você também pode adicionar mensagens da função de ferramenta para simular chamadas de função. Isso é útil para ensinar a IA a usar plug-ins e fornecer contexto adicional à conversa.

Por exemplo, para injetar informações sobre o usuário atual no histórico de bate-papo sem exigir que o usuário forneça as informações ou fazer com que o LLM perca tempo solicitando-as, você pode usar a função de ferramenta para fornecer as informações diretamente.

Abaixo está um exemplo de como podemos fornecer alergias do usuário ao assistente simulando uma chamada de função para o User plug-in.

Dica

As chamadas de função simuladas são particularmente úteis para fornecer detalhes sobre os usuários atuais. Os LLMs de hoje foram treinados para serem particularmente sensíveis às informações do usuário. Mesmo que você forneça detalhes do usuário em uma mensagem do sistema, o LLM ainda pode optar por ignorá-la. Se você fornecê-lo por meio de uma mensagem do usuário ou mensagem da ferramenta, é mais provável que o LLM o use.

// Add a simulated function call from the assistant
chatHistory.Add(
    new() {
        Role = AuthorRole.Assistant,
        Items = [
            new FunctionCallContent(
                functionName: "get_user_allergies",
                pluginName: "User",
                id: "0001",
                arguments: new () { {"username", "laimonisdumins"} }
            ),
            new FunctionCallContent(
                functionName: "get_user_allergies",
                pluginName: "User",
                id: "0002",
                arguments: new () { {"username", "emavargova"} }
            )
        ]
    }
);

// Add a simulated function results from the tool role
chatHistory.Add(
    new() {
        Role = AuthorRole.Tool,
        Items = [
            new FunctionResultContent(
                functionName: "get_user_allergies",
                pluginName: "User",
                id: "0001",
                result: "{ \"allergies\": [\"peanuts\", \"gluten\"] }"
            )
        ]
    }
);
chatHistory.Add(
    new() {
        Role = AuthorRole.Tool,
        Items = [
            new FunctionResultContent(
                functionName: "get_user_allergies",
                pluginName: "User",
                id: "0002",
                result: "{ \"allergies\": [\"dairy\", \"soy\"] }"
            )
        ]
    }
);
from semantic_kernel.contents import ChatMessageContent, FunctionCallContent, FunctionResultContent

# Add a simulated function call from the assistant
chat_history.add_message(
    ChatMessageContent(
        role=AuthorRole.ASSISTANT,
        items=[
            FunctionCallContent(
                name="get_user_allergies-User",
                id="0001",
                arguments=str({"username": "laimonisdumins"})
            ),
            FunctionCallContent(
                name="get_user_allergies-User",
                id="0002",
                arguments=str({"username": "emavargova"})
            )
        ]
    )
)

# Add a simulated function results from the tool role
chat_history.add_message(
    ChatMessageContent(
        role=AuthorRole.TOOL,
        items=[
            FunctionResultContent(
                name="get_user_allergies-User",
                id="0001",
                result="{ \"allergies\": [\"peanuts\", \"gluten\"] }"
            )
        ]
    )
)
chat_history.add_message(
    ChatMessageContent(
        role=AuthorRole.TOOL,
        items=[
            FunctionResultContent(
                name="get_user_allergies-User",
                id="0002",
                result="{ \"allergies\": [\"dairy\", \"gluten\"] }"
            )
        ]
    )
)
This functionality is not supported in the current version of Semantic Kernel for Java. 

Importante

Ao simular resultados de ferramentas, você deve sempre fornecer o id da chamada de função à qual o resultado corresponde. Isso é importante para que a IA entenda o contexto do resultado. Alguns LLMs, como o OpenAI, lançarão um erro se o id estiver ausente ou se não id corresponder a uma chamada de função.

Inspecionando um objeto de histórico de bate-papo

Sempre que você passar um objeto de histórico de chat para um serviço de conclusão de chat com chamada automática de função habilitada, o objeto de histórico de chat será manipulado para incluir as chamadas de função e os resultados. Isso permite que você evite ter que adicionar manualmente essas mensagens ao objeto de histórico de bate-papo e também permite que você inspecione o objeto de histórico de bate-papo para ver as chamadas de função e os resultados.

No entanto, você ainda deve adicionar as mensagens finais ao objeto do histórico de bate-papo. Abaixo está um exemplo de como você pode inspecionar o objeto de histórico de chat para ver as chamadas e os resultados da função.

using Microsoft.SemanticKernel.ChatCompletion;

ChatHistory chatHistory = [
    new() {
        Role = AuthorRole.User,
        Content = "Please order me a pizza"
    }
];

// Get the current length of the chat history object
int currentChatHistoryLength = chatHistory.Count;

// Get the chat message content
ChatMessageContent results = await chatCompletionService.GetChatMessageContentAsync(
    chatHistory,
    kernel: kernel
);

// Get the new messages added to the chat history object
for (int i = currentChatHistoryLength; i < chatHistory.Count; i++)
{
    Console.WriteLine(chatHistory[i]);
}

// Print the final message
Console.WriteLine(results);

// Add the final message to the chat history object
chatHistory.Add(results);
from semantic_kernel.contents import ChatMessageContent

chat_history = ChatHistory([
    ChatMessageContent(
        role=AuthorRole.USER,
        content="Please order me a pizza"
    )
])

# Get the current length of the chat history object
current_chat_history_length = len(chat_history)

# Get the chat message content
results = await chat_completion.get_chat_message_content(
    chat_history=history,
    settings=execution_settings,
    kernel=kernel,
)

# Get the new messages added to the chat history object
for i in range(current_chat_history_length, len(chat_history)):
    print(chat_history[i])

# Print the final message
print(results)

# Add the final message to the chat history object
chat_history.add_message(results)
import com.microsoft.semantickernel.services.chatcompletion.ChatHistory;

ChatHistory chatHistory = new ChatHistory();
chatHistory.addUserMessage("Please order me a pizza");

// Get the chat message content
List<ChatMessageContent> results = chatCompletionService.getChatMessageContentsAsync(
    chatHistory,
    kernel,
    null
).block();

results.forEach(result -> System.out.println(result.getContent());

// Get the new messages added to the chat history object. By default, 
// the ChatCompletionService returns new messages only. 
chatHistory.addAll(results);

Próximas etapas

Agora que você sabe como criar e gerenciar um objeto de histórico de chat, pode saber mais sobre a chamada de função no tópico Chamada de função.