Com a conclusão do chat, você pode simular uma conversa de ida e volta com um agente de IA. É claro que isso é útil para criar bots de bate-papo, mas também pode ser usado para criar agentes autônomos que podem concluir processos de negócios, gerar código e muito mais. Como o principal tipo de modelo fornecido pela OpenAI, Google, Mistral, Facebook e outros, a conclusão do bate-papo é o serviço de IA mais comum que você adicionará ao seu projeto do Semantic Kernel.
Ao escolher um modelo de conclusão de chat, você precisará considerar o seguinte:
Quais modalidades o modelo suporta (por exemplo, texto, imagem, áudio, etc.)?
Ele suporta chamada de função?
Com que rapidez ele recebe e gera tokens?
Quanto custa cada token?
Importante
De todas as perguntas acima, a mais importante é se o modelo dá suporte à chamada de função. Caso contrário, você não poderá usar o modelo para chamar o código existente. A maioria dos modelos mais recentes da OpenAI, Google, Mistral e Amazon suporta chamadas de função. O suporte de pequenos modelos de linguagem, no entanto, ainda é limitado.
Configurando seu ambiente local
Alguns dos Serviços de IA podem ser hospedados localmente e podem exigir alguma configuração. Abaixo estão as instruções para aqueles que dão suporte a isso.
Depois que o contêiner for iniciado, inicie uma janela terminal para o contêiner do Docker, por exemplo, se estiver usando a área de trabalho do Docker, escolha Open in Terminal entre ações.
Neste terminal, baixe os modelos necessários, por exemplo, aqui estamos baixando o modelo phi3.
ollama pull phi3
Nenhuma configuração local.
Nenhuma configuração local.
Clone o repositório que contém o modelo ONNX que você deseja usar.
Antes de adicionar o preenchimento do chat ao seu kernel, você precisará instalar os pacotes necessários. Abaixo estão os pacotes que você precisará instalar para cada provedor de serviços de IA.
Modelos antropáticos estão disponíveis na plataforma Amazon Bedrock. Para usar os modelos Anthropic, você precisará instalar o pacote do conector Amazon.
Para outros provedores de serviços de IA que oferecem suporte à API de conclusão de bate-papo OpenAI (por exemplo, LLM Studio), você pode usar o conector de conclusão de bate-papo OpenAI.
Agora que você instalou os pacotes necessários, pode criar serviços de conclusão de bate-papo. Abaixo estão as várias maneiras de criar serviços de conclusão de bate-papo usando o Semantic Kernel.
Adicionando diretamente ao kernel
Para adicionar um serviço de conclusão de chat, você pode usar o código a seguir para adicioná-lo ao provedor de serviços interno do kernel.
using Microsoft.SemanticKernel;
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddAzureOpenAIChatCompletion(
deploymentName: "NAME_OF_YOUR_DEPLOYMENT",
apiKey: "YOUR_API_KEY",
endpoint: "YOUR_AZURE_ENDPOINT",
modelId: "gpt-4", // Optional name of the underlying model if the deployment name doesn't match the model name
serviceId: "YOUR_SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; if not provided, the HttpClient from the kernel will be used
);
Kernel kernel = kernelBuilder.Build();
using Microsoft.SemanticKernel;
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddOpenAIChatCompletion(
modelId: "gpt-4",
apiKey: "YOUR_API_KEY",
orgId: "YOUR_ORG_ID", // Optional
serviceId: "YOUR_SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; if not provided, the HttpClient from the kernel will be used
);
Kernel kernel = kernelBuilder.Build();
Importante
O conector de conclusão de bate-papo do Mistral é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddMistralChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Kernel kernel = kernelBuilder.Build();
Importante
O conector de conclusão de bate-papo do Google é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Connectors.Google;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddGoogleAIGeminiChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
apiVersion: GoogleAIVersion.V1, // Optional
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Kernel kernel = kernelBuilder.Build();
Importante
O conector de conclusão de bate-papo do Hugging Face é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddHuggingFaceChatCompletion(
model: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Kernel kernel = kernelBuilder.Build();
Importante
O conector de conclusão de chat do Azure AI Inference é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddAzureAIInferenceChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Kernel kernel = kernelBuilder.Build();
Importante
O conector de conclusão de chat do Ollama é no momento experimental. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddOllamaChatCompletion(
modelId: "NAME_OF_MODEL", // E.g. "phi3" if phi3 was downloaded as described above.
endpoint: new Uri("YOUR_ENDPOINT"), // E.g. "http://localhost:11434" if Ollama has been started in docker as described above.
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
Kernel kernel = kernelBuilder.Build();
Importante
O conector de completude de chat Bedrock, que é necessário para a Anthropic, é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddBedrockChatCompletionService(
modelId: "NAME_OF_MODEL",
bedrockRuntime: amazonBedrockRuntime, // Optional; An instance of IAmazonBedrockRuntime, used to communicate with Azure Bedrock.
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
Kernel kernel = kernelBuilder.Build();
Importante
O conector de conclusão de chat Bedrock é no momento experimental. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddBedrockChatCompletionService(
modelId: "NAME_OF_MODEL",
bedrockRuntime: amazonBedrockRuntime, // Optional; An instance of IAmazonBedrockRuntime, used to communicate with Azure Bedrock.
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
Kernel kernel = kernelBuilder.Build();
Importante
O conector de conclusão de chat ONNX está atualmente em fase experimental. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0070
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddOnnxRuntimeGenAIChatCompletion(
modelId: "NAME_OF_MODEL", // E.g. phi-3
modelPath: "PATH_ON_DISK", // Path to the model on disk e.g. C:\Repos\huggingface\microsoft\Phi-3-mini-4k-instruct-onnx\cpu_and_mobile\cpu-int4-rtn-block-32
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
jsonSerializerOptions: customJsonSerializerOptions // Optional; for providing custom serialization settings for e.g. function argument / result serialization and parsing.
);
Kernel kernel = kernelBuilder.Build();
Para outros provedores de serviços de IA que oferecem suporte à API de conclusão de bate-papo OpenAI (por exemplo, LLM Studio), você pode usar o código a seguir para reutilizar o conector de conclusão de bate-papo OpenAI existente.
Importante
O uso de endpoints personalizados com o conector OpenAI é atualmente experimental. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0010.
using Microsoft.SemanticKernel;
#pragma warning disable SKEXP0010
IKernelBuilder kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddOpenAIChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Used to point to your service
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Kernel kernel = kernelBuilder.Build();
Como usar a injeção de dependência
Se você estiver usando a injeção de dependência, provavelmente desejará adicionar seus serviços de IA diretamente ao provedor de serviços. Isso é útil se você quiser criar singletons de seus serviços de IA e reutilizá-los em kernels transitórios.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
builder.Services.AddAzureOpenAIChatCompletion(
deploymentName: "NAME_OF_YOUR_DEPLOYMENT",
apiKey: "YOUR_API_KEY",
endpoint: "YOUR_AZURE_ENDPOINT",
modelId: "gpt-4", // Optional name of the underlying model if the deployment name doesn't match the model name
serviceId: "YOUR_SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
builder.Services.AddOpenAIChatCompletion(
modelId: "gpt-4",
apiKey: "YOUR_API_KEY",
orgId: "YOUR_ORG_ID", // Optional; for OpenAI deployment
serviceId: "YOUR_SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
O conector de conclusão de bate-papo do Mistral é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddMistralChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
O conector de conclusão de bate-papo do Google é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Connectors.Google;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddGoogleAIGeminiChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
apiVersion: GoogleAIVersion.V1, // Optional
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
O conector de conclusão de bate-papo do Hugging Face é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddHuggingFaceChatCompletion(
model: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
O conector de conclusão de chat do Azure AI Inference é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddAzureAIInferenceChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
O conector de conclusão de chat do Ollama está em fase experimental. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddOllamaChatCompletion(
modelId: "NAME_OF_MODEL", // E.g. "phi3" if phi3 was downloaded as described above.
endpoint: new Uri("YOUR_ENDPOINT"), // E.g. "http://localhost:11434" if Ollama has been started in docker as described above.
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
O conector de conclusão de chat Bedrock, que é necessário para o Anthropic, é atualmente experimental. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddBedrockChatCompletionService(
modelId: "NAME_OF_MODEL",
bedrockRuntime: amazonBedrockRuntime, // Optional; An instance of IAmazonBedrockRuntime, used to communicate with Azure Bedrock.
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
O conector de conclusão de chat Bedrock é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddBedrockChatCompletionService(
modelId: "NAME_OF_MODEL",
bedrockRuntime: amazonBedrockRuntime, // Optional; An instance of IAmazonBedrockRuntime, used to communicate with Azure Bedrock.
serviceId: "SERVICE_ID" // Optional; for targeting specific services within Semantic Kernel
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Importante
O conector de conclusão de chat ONNX é atualmente experimental. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0070
builder.Services.AddOnnxRuntimeGenAIChatCompletion(
modelId: "NAME_OF_MODEL", // E.g. phi-3
modelPath: "PATH_ON_DISK", // Path to the model on disk e.g. C:\Repos\huggingface\microsoft\Phi-3-mini-4k-instruct-onnx\cpu_and_mobile\cpu-int4-rtn-block-32
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
jsonSerializerOptions: customJsonSerializerOptions // Optional; for providing custom serialization settings for e.g. function argument / result serialization and parsing.
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Para outros provedores de serviços de IA que oferecem suporte à API de conclusão de bate-papo OpenAI (por exemplo, LLM Studio), você pode usar o código a seguir para reutilizar o conector de conclusão de bate-papo OpenAI existente.
Importante
O uso de endpoints personalizados com o conector OpenAI é atualmente experimental. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0010.
using Microsoft.SemanticKernel;
var builder = Host.CreateApplicationBuilder(args);
#pragma warning disable SKEXP0010
builder.Services.AddOpenAIChatCompletion(
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Used to point to your service
serviceId: "SERVICE_ID", // Optional; for targeting specific services within Semantic Kernel
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
builder.Services.AddTransient((serviceProvider)=> {
return new Kernel(serviceProvider);
});
Criando instâncias independentes
Por fim, você pode criar instâncias do serviço diretamente para que possa adicioná-las a um kernel posteriormente ou usá-las diretamente em seu código sem nunca injetá-las no kernel ou em um provedor de serviços.
using Microsoft.SemanticKernel.Connectors.AzureOpenAI;
AzureOpenAIChatCompletionService chatCompletionService = new (
deploymentName: "NAME_OF_YOUR_DEPLOYMENT",
apiKey: "YOUR_API_KEY",
endpoint: "YOUR_AZURE_ENDPOINT",
modelId: "gpt-4", // Optional name of the underlying model if the deployment name doesn't match the model name
httpClient: new HttpClient() // Optional; if not provided, the HttpClient from the kernel will be used
);
using Microsoft.SemanticKernel.Connectors.OpenAI;
OpenAIChatCompletionService chatCompletionService = new (
modelId: "gpt-4",
apiKey: "YOUR_API_KEY",
organization: "YOUR_ORG_ID", // Optional
httpClient: new HttpClient() // Optional; if not provided, the HttpClient from the kernel will be used
);
Importante
O conector de conclusão de bate-papo do Mistral é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.MistralAI;
#pragma warning disable SKEXP0070
MistralAIChatCompletionService chatCompletionService = new (
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Optional
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Importante
O conector de conclusão de bate-papo do Google é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.Google;
#pragma warning disable SKEXP0070
GoogleAIGeminiChatCompletionService chatCompletionService = new (
modelId: "NAME_OF_MODEL",
apiKey: "API_KEY",
apiVersion: GoogleAIVersion.V1, // Optional
httpClient: new HttpClient() // Optional; for customizing HTTP client
);
Importante
O conector de conclusão de bate-papo do Hugging Face é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.HuggingFace;
#pragma warning disable SKEXP0070
HuggingFaceChatCompletionService chatCompletionService = new (
model: "NAME_OF_MODEL",
apiKey: "API_KEY",
endpoint: new Uri("YOUR_ENDPOINT") // Optional
);
Importante
O conector de conclusão de chat do Azure AI Inference é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.AzureAIInference;
#pragma warning disable SKEXP0070
AzureAIInferenceChatCompletionService chatCompletionService = new (
modelId: "YOUR_MODEL_ID",
apiKey: "YOUR_API_KEY",
endpoint: new Uri("YOUR_ENDPOINT"), // Used to point to your service
httpClient: new HttpClient() // Optional; if not provided, the HttpClient from the kernel will be used
);
Importante
O conector do Ollama para conclusão de chat é experimental atualmente. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.ChatCompletion;
using OllamaSharp;
#pragma warning disable SKEXP0070
using var ollamaClient = new OllamaApiClient(
uriString: "YOUR_ENDPOINT" // E.g. "http://localhost:11434" if Ollama has been started in docker as described above.
defaultModel: "NAME_OF_MODEL" // E.g. "phi3" if phi3 was downloaded as described above.
);
IChatCompletionService chatCompletionService = ollamaClient.AsChatCompletionService();
Importante
O conector de conclusão de conversa Bedrock necessário para a Anthropic é experimental no momento. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.Amazon;
#pragma warning disable SKEXP0070
BedrockChatCompletionService chatCompletionService = new BedrockChatCompletionService(
modelId: "NAME_OF_MODEL",
bedrockRuntime: amazonBedrockRuntime // Optional; An instance of IAmazonBedrockRuntime, used to communicate with Azure Bedrock.
);
Importante
O conector de conclusão de chat Bedrock está em fase experimental. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.Amazon;
#pragma warning disable SKEXP0070
BedrockChatCompletionService chatCompletionService = new BedrockChatCompletionService(
modelId: "NAME_OF_MODEL",
bedrockRuntime: amazonBedrockRuntime // Optional; An instance of IAmazonBedrockRuntime, used to communicate with Azure Bedrock.
);
Importante
O conector de conclusão de chat do ONNX está atualmente em fase experimental. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0070.
using Microsoft.SemanticKernel.Connectors.Onnx;
#pragma warning disable SKEXP0070
OnnxRuntimeGenAIChatCompletionService chatCompletionService = new OnnxRuntimeGenAIChatCompletionService(
modelId: "NAME_OF_MODEL", // E.g. phi-3
modelPath: "PATH_ON_DISK", // Path to the model on disk e.g. C:\Repos\huggingface\microsoft\Phi-3-mini-4k-instruct-onnx\cpu_and_mobile\cpu-int4-rtn-block-32
jsonSerializerOptions: customJsonSerializerOptions // Optional; for providing custom serialization settings for e.g. function argument / result serialization and parsing.
);
Para outros provedores de serviços de IA que oferecem suporte à API de conclusão de bate-papo OpenAI (por exemplo, LLM Studio), você pode usar o código a seguir para reutilizar o conector de conclusão de bate-papo OpenAI existente.
Importante
O uso de endpoints personalizados com o conector OpenAI é atualmente experimental. Para usá-lo, você precisará adicionar #pragma warning disable SKEXP0010.
using Microsoft.SemanticKernel.Connectors.OpenAI;
#pragma warning disable SKEXP0010
OpenAIChatCompletionService chatCompletionService = new (
modelId: "gpt-4",
apiKey: "YOUR_API_KEY",
organization: "YOUR_ORG_ID", // Optional
endpoint: new Uri("YOUR_ENDPOINT"), // Used to point to your service
httpClient: new HttpClient() // Optional; if not provided, the HttpClient from the kernel will be used
);
Para criar um serviço de conclusão de chat, você precisa importar os módulos necessários e criar uma instância do serviço. Abaixo estão as etapas para criar um serviço de conclusão de chat para cada provedor de serviços de IA.
Dica
Há três métodos para fornecer as informações necessárias aos serviços de IA. Você pode fornecer as informações diretamente por meio do construtor, definir as variáveis de ambiente necessárias ou criar um arquivo .env no diretório do projeto que contém as variáveis de ambiente. Você pode visitar esta página para encontrar todas as variáveis de ambiente necessárias para cada provedor de serviços de IA: https://github.com/microsoft/semantic-kernel/blob/main/python/samples/concepts/setup/ALL_SETTINGS.md
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
chat_completion_service = AzureChatCompletion(
deployment_name="my-deployment",
api_key="my-api-key",
endpoint="my-api-endpoint", # Used to point to your service
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
# You can do the following if you have set the necessary environment variables or created a .env file
chat_completion_service = AzureChatCompletion(service_id="my-service-id")
Observação
O serviço AzureChatCompletion também dá suporte à autenticação Microsoft Entra. Se você não fornecer uma chave de API, o serviço tentará autenticar usando o token Entra.
from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion
chat_completion_service = OpenAIChatCompletion(
ai_model_id="my-deployment",
api_key="my-api-key",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
# You can do the following if you have set the necessary environment variables or created a .env file
chat_completion_service = OpenAIChatCompletion(service_id="my-service-id")
from semantic_kernel.connectors.ai.azure_ai_inference import AzureAIInferenceChatCompletion
chat_completion_service = AzureAIInferenceChatCompletion(
ai_model_id="my-deployment",
api_key="my-api-key",
endpoint="my-api-endpoint", # Used to point to your service
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
# You can do the following if you have set the necessary environment variables or created a .env file
chat_completion_service = AzureAIInferenceChatCompletion(ai_model_id="my-deployment", service_id="my-service-id")
# You can also use an Azure OpenAI deployment with the Azure AI Inference service
from azure.ai.inference.aio import ChatCompletionsClient
from azure.identity.aio import DefaultAzureCredential
chat_completion_service = AzureAIInferenceChatCompletion(
ai_model_id="my-deployment",
client=ChatCompletionsClient(
endpoint=f"{str(endpoint).strip('/')}/openai/deployments/{deployment_name}",
credential=DefaultAzureCredential(),
credential_scopes=["https://cognitiveservices.azure.com/.default"],
),
)
Observação
O serviço AzureAIInferenceChatCompletion também dá suporte à autenticação Microsoft Entra. Se você não fornecer uma chave de API, o serviço tentará autenticar usando o token Entra.
from semantic_kernel.connectors.ai.anthropic import AnthropicChatCompletion
chat_completion_service = AnthropicChatCompletion(
chat_model_id="model-id",
api_key="my-api-key",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
from semantic_kernel.connectors.ai.bedrock import BedrockChatCompletion
chat_completion_service = BedrockChatCompletion(
model_id="model-id",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
Observação
A Amazon Bedrock não aceita uma chave de API. Siga este guia para configurar seu ambiente.
from semantic_kernel.connectors.ai.google.google_ai import GoogleAIChatCompletion
chat_completion_service = GoogleAIChatCompletion(
gemini_model_id="model-id",
api_key="my-api-key",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
Dica
Os usuários podem acessar os modelos gemini do Google por meio do Google AI Studio ou da plataforma Google Vertex. Siga este guia para configurar seu ambiente.
from semantic_kernel.connectors.ai.google.vertex_ai import VertexAIChatCompletion
chat_completion_service = VertexAIChatCompletion(
project_id="my-project-id",
gemini_model_id="model-id",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
Dica
Os usuários podem acessar os modelos gemini do Google por meio do Google AI Studio ou da plataforma Google Vertex. Siga este guia para configurar seu ambiente.
from semantic_kernel.connectors.ai.mistral_ai import MistralAIChatCompletion
chat_completion_service = MistralAIChatCompletion(
ai_model_id="model-id",
api_key="my-api-key",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
from semantic_kernel.connectors.ai.ollama import OllamaChatCompletion
chat_completion_service = OllamaChatCompletion(
ai_model_id="model-id",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
Dica
Saiba mais sobre o Ollama e baixe o software necessário aqui .
from semantic_kernel.connectors.ai.onnx import OnnxGenAIChatCompletion
chat_completion_service = OnnxGenAIChatCompletion(
template="phi3v",
ai_model_path="model-path",
service_id="my-service-id", # Optional; for targeting specific services within Semantic Kernel
)
Você pode começar a usar o serviço de conclusão imediatamente ou adicionar o serviço de conclusão de chat a um kernel. Você pode usar o código a seguir para adicionar um serviço ao kernel.
from semantic_kernel import Kernel
# Initialize the kernel
kernel = Kernel()
# Add the chat completion service created above to the kernel
kernel.add_service(chat_completion_service)
Você pode criar instâncias do serviço de conclusão de chat diretamente e adicioná-las a um kernel ou usá-las diretamente em seu código sem injetá-las no kernel. O código a seguir mostra como criar um serviço de conclusão de chat e adicioná-lo ao kernel.
import com.azure.ai.openai.OpenAIAsyncClient;
import com.azure.ai.openai.OpenAIClientBuilder;
import com.microsoft.semantickernel.Kernel;
import com.microsoft.semantickernel.services.chatcompletion.ChatCompletionService;
// Create the client
OpenAIAsyncClient client = new OpenAIClientBuilder()
.credential(azureOpenAIClientCredentials)
.endpoint(azureOpenAIClientEndpoint)
.buildAsyncClient();
// Create the chat completion service
ChatCompletionService openAIChatCompletion = OpenAIChatCompletion.builder()
.withOpenAIAsyncClient(client)
.withModelId(modelId)
.build();
// Initialize the kernel
Kernel kernel = Kernel.builder()
.withAIService(ChatCompletionService.class, openAIChatCompletion)
.build();
import com.azure.ai.openai.OpenAIAsyncClient;
import com.azure.ai.openai.OpenAIClientBuilder;
import com.microsoft.semantickernel.Kernel;
import com.microsoft.semantickernel.services.chatcompletion.ChatCompletionService;
// Create the client
OpenAIAsyncClient client = new OpenAIClientBuilder()
.credential(openAIClientCredentials)
.buildAsyncClient();
// Create the chat completion service
ChatCompletionService openAIChatCompletion = OpenAIChatCompletion.builder()
.withOpenAIAsyncClient(client)
.withModelId(modelId)
.build();
// Initialize the kernel
Kernel kernel = Kernel.builder()
.withAIService(ChatCompletionService.class, openAIChatCompletion)
.build();
Recuperando serviços de conclusão de chat
Depois de adicionar serviços de conclusão de chat ao kernel, você pode recuperá-los usando o método get service. Abaixo está um exemplo de como você pode recuperar um serviço de conclusão de chat do kernel.
var chatCompletionService = kernel.GetRequiredService<IChatCompletionService>();
from semantic_kernel.connectors.ai.chat_completion_client_base import ChatCompletionClientBase
# Retrieve the chat completion service by type
chat_completion_service = kernel.get_service(type=ChatCompletionClientBase)
# Retrieve the chat completion service by id
chat_completion_service = kernel.get_service(service_id="my-service-id")
# Retrieve the default inference settings
execution_settings = kernel.get_prompt_execution_settings_from_service_id("my-service-id")
A adição do serviço de conclusão de chat ao kernel não será necessária se você não precisar usar outros serviços no kernel. Você pode usar o serviço de conclusão de chat diretamente em seu código.
Uso de serviços de conclusão de chat
Agora que você tem um serviço de conclusão de chat, pode usá-lo para gerar respostas de um agente de IA. Existem duas maneiras principais de usar um serviço de conclusão de bate-papo:
sem streaming: aguarde até que o serviço gere uma resposta inteira antes de devolvê-la ao usuário.
Streaming: partes individuais da resposta são geradas e retornadas ao usuário à medida que são criadas.
Antes de começar, você precisará criar manualmente uma instância de configurações de execução para usar o serviço de conclusão de chat se não tiver registrado o serviço com o kernel.
from semantic_kernel.connectors.ai.open_ai import OpenAIChatPromptExecutionSettings
execution_settings = OpenAIChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.open_ai import OpenAIChatPromptExecutionSettings
execution_settings = OpenAIChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.azure_ai_inference import AzureAIInferenceChatPromptExecutionSettings
execution_settings = AzureAIInferenceChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.anthropic import AnthropicChatPromptExecutionSettings
execution_settings = AnthropicChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.bedrock import BedrockChatPromptExecutionSettings
execution_settings = BedrockChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.google.google_ai import GoogleAIChatPromptExecutionSettings
execution_settings = GoogleAIChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.google.vertex_ai import VertexAIChatPromptExecutionSettings
execution_settings = VertexAIChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.mistral_ai import MistralAIChatPromptExecutionSettings
execution_settings = MistralAIChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.ollama import OllamaChatPromptExecutionSettings
execution_settings = OllamaChatPromptExecutionSettings()
from semantic_kernel.connectors.ai.onnx import OnnxGenAIPromptExecutionSettings
execution_settings = OnnxGenAIPromptExecutionSettings()
Dica
Para ver o que você pode configurar nas configurações de execução, verifique a definição de classe no código-fonte ou confira a documentação da API.
Abaixo estão as duas maneiras de usar um serviço de conclusão de bate-papo para gerar respostas.
Conclusão de bate-papo sem transmissão
Para usar a conclusão de chat sem streaming, você pode usar o código a seguir para gerar uma resposta do agente de IA.
ChatHistory history = [];
history.AddUserMessage("Hello, how are you?");
var response = await chatCompletionService.GetChatMessageContentAsync(
history,
kernel: kernel
);
chat_history = ChatHistory()
chat_history.add_user_message("Hello, how are you?")
response = await chat_completion.get_chat_message_content(
chat_history=history,
settings=execution_settings,
)
ChatHistory history = new ChatHistory();
history.addUserMessage("Hello, how are you?");
InvocationContext optionalInvocationContext = null;
List<ChatMessageContent<?>> response = chatCompletionService.getChatMessageContentsAsync(
history,
kernel,
optionalInvocationContext
);
Conclusão do bate-papo por streaming
Para usar a conclusão do chat de streaming, você pode usar o código a seguir para gerar uma resposta do agente de IA.
ChatHistory history = [];
history.AddUserMessage("Hello, how are you?");
var response = chatCompletionService.GetStreamingChatMessageContentsAsync(
chatHistory: history,
kernel: kernel
);
await foreach (var chunk in response)
{
Console.Write(chunk);
}
chat_history = ChatHistory()
chat_history.add_user_message("Hello, how are you?")
response = chat_completion.get_streaming_chat_message_content(
chat_history=history,
settings=execution_settings,
)
async for chunk in response:
print(chunk, end="")
Observação
O Semantic Kernel for Java não dá suporte ao modelo de resposta de streaming.
Próximas etapas
Agora que você adicionou serviços de conclusão de chat ao seu projeto do Semantic Kernel, pode começar a criar conversas com seu agente de IA. Para saber mais sobre como usar um serviço de conclusão de chat, confira os seguintes artigos: