Compartilhar via


MultivariateBatchDetectionOptions Class

Detection request for batch inference. This is an asynchronous inference which will need another API to get detection results.

All required parameters must be populated in order to send to Azure.

Inheritance
azure.ai.anomalydetector._model_base.Model
MultivariateBatchDetectionOptions

Constructor

MultivariateBatchDetectionOptions(*args: Any, **kwargs: Any)

Variables

Name Description
data_source
str

Source link to the input data to indicate an accessible Azure storage Uri, either pointed to an Azure blob storage folder, or pointed to a CSV file in Azure blob storage based on you data schema selection. The data schema should be exactly the same with those used in the training phase. Required.

top_contributor_count
int

An optional field, which is used to specify the number of top contributed variables for one anomalous timestamp in the response. The default number is 10. Required.

start_time

A required field, indicating the start time of data for detection, which should be date-time of ISO 8601 format. Required.

end_time

A required field, indicating the end time of data for detection, which should be date-time of ISO 8601 format. Required.

Methods

clear
copy
get
items
keys
pop
popitem
setdefault
update
values

clear

clear() -> None

copy

copy()

get

get(key: str, default: Any = None) -> Any

Parameters

Name Description
key
Required
default
Default value: None

items

items() -> ItemsView

keys

keys() -> KeysView

pop

pop(key: ~typing.Any, default: ~typing.Any = <object object>) -> Any

Parameters

Name Description
key
Required
default

popitem

popitem() -> Tuple[str, Any]

setdefault

setdefault(key: ~typing.Any, default: ~typing.Any = <object object>) -> Any

Parameters

Name Description
key
Required
default

update

update(*args: Any, **kwargs: Any) -> None

values

values() -> ValuesView

Attributes

data_source

Source link to the input data to indicate an accessible Azure storage Uri, either pointed to an Azure blob storage folder, or pointed to a CSV file in Azure blob storage based on you data schema selection. The data schema should be exactly the same with those used in the training phase. Required.

data_source: str

end_time

A required field, indicating the end time of data for detection, which should be date-time of ISO 8601 format. Required.

end_time: datetime

start_time

A required field, indicating the start time of data for detection, which should be date-time of ISO 8601 format. Required.

start_time: datetime

top_contributor_count

An optional field, which is used to specify the number of top contributed variables for one anomalous timestamp in the response. The default number is 10. Required.

top_contributor_count: int