StandardTrainersCatalog.SgdCalibrated Método
Definição
Importante
Algumas informações se referem a produtos de pré-lançamento que podem ser substancialmente modificados antes do lançamento. A Microsoft não oferece garantias, expressas ou implícitas, das informações aqui fornecidas.
Sobrecargas
SgdCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, SgdCalibratedTrainer+Options) |
Crie SgdCalibratedTrainer com opções avançadas, que prevê um destino usando um modelo de classificação linear. SGD (descendente de gradiente stocástico) é um algoritmo iterativo que otimiza uma função de objetivo diferencial. |
SgdCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Double, Single) |
Criar SgdCalibratedTrainer, que prevê um destino usando um modelo de classificação linear. SGD (descendente de gradiente stocástico) é um algoritmo iterativo que otimiza uma função de objetivo diferencial. |
SgdCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, SgdCalibratedTrainer+Options)
Crie SgdCalibratedTrainer com opções avançadas, que prevê um destino usando um modelo de classificação linear. SGD (descendente de gradiente stocástico) é um algoritmo iterativo que otimiza uma função de objetivo diferencial.
public static Microsoft.ML.Trainers.SgdCalibratedTrainer SgdCalibrated (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.SgdCalibratedTrainer.Options options);
static member SgdCalibrated : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.SgdCalibratedTrainer.Options -> Microsoft.ML.Trainers.SgdCalibratedTrainer
<Extension()>
Public Function SgdCalibrated (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As SgdCalibratedTrainer.Options) As SgdCalibratedTrainer
Parâmetros
O objeto do treinador do catálogo de classificação binária.
- options
- SgdCalibratedTrainer.Options
Opções de treinador.
Retornos
Exemplos
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class SgdCalibratedWithOptions
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define trainer options.
var options = new SgdCalibratedTrainer.Options()
{
// Make the convergence tolerance tighter.
ConvergenceTolerance = 5e-5,
// Increase the maximum number of passes over training data.
NumberOfIterations = 30,
// Give the instances of the positive class slightly more weight.
PositiveInstanceWeight = 1.2f,
};
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.SgdCalibrated(options);
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: False
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.Evaluate(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.60
// AUC: 0.65
// F1 Score: 0.50
// Negative Precision: 0.59
// Negative Recall: 0.74
// Positive Precision: 0.61
// Positive Recall: 0.43
//
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 184 | 54 | 0.7731
// negative || 156 | 106 | 0.4046
// ||======================
// Precision || 0.5412 | 0.6625 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.03f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
Aplica-se a
SgdCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Double, Single)
Criar SgdCalibratedTrainer, que prevê um destino usando um modelo de classificação linear. SGD (descendente de gradiente stocástico) é um algoritmo iterativo que otimiza uma função de objetivo diferencial.
public static Microsoft.ML.Trainers.SgdCalibratedTrainer SgdCalibrated (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, int numberOfIterations = 20, double learningRate = 0.01, float l2Regularization = 1E-06);
static member SgdCalibrated : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * string * int * double * single -> Microsoft.ML.Trainers.SgdCalibratedTrainer
<Extension()>
Public Function SgdCalibrated (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional numberOfIterations As Integer = 20, Optional learningRate As Double = 0.01, Optional l2Regularization As Single = 1E-06) As SgdCalibratedTrainer
Parâmetros
O objeto do treinador do catálogo de classificação binária.
- labelColumnName
- String
O nome da coluna de rótulo ou variável dependente. Os dados da coluna devem ser Boolean.
- featureColumnName
- String
Os recursos ou variáveis independentes. Os dados da coluna devem ser um vetor de tamanho conhecido de Single.
- exampleWeightColumnName
- String
O nome da coluna de peso de exemplo (opcional).
- numberOfIterations
- Int32
O número máximo de passagens pelo conjunto de dados de treinamento; definido como 1 para simular o aprendizado online.
- learningRate
- Double
A taxa de aprendizado inicial usada pelo SGD.
- l2Regularization
- Single
O peso L2 para regularização.
Retornos
Exemplos
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class SgdCalibrated
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.SgdCalibrated();
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: False
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.Evaluate(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.60
// AUC: 0.63
// F1 Score: 0.43
// Negative Precision: 0.58
// Negative Recall: 0.85
// Positive Precision: 0.66
// Positive Recall: 0.32
//
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 77 | 161 | 0.3235
// negative || 43 | 219 | 0.8359
// ||======================
// Precision || 0.6417 | 0.5763 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.03f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}