Compartilhar via


SvmLightLoaderSaverCatalog.CreateSvmLightLoader Método

Definição

Cria um carregador que carrega arquivos de formato SVM-light. SvmLightLoader.

public static Microsoft.ML.Data.SvmLightLoader CreateSvmLightLoader (this Microsoft.ML.DataOperationsCatalog catalog, long? numberOfRows = default, int inputSize = 0, bool zeroBased = false, Microsoft.ML.Data.IMultiStreamSource dataSample = default);
static member CreateSvmLightLoader : Microsoft.ML.DataOperationsCatalog * Nullable<int64> * int * bool * Microsoft.ML.Data.IMultiStreamSource -> Microsoft.ML.Data.SvmLightLoader
<Extension()>
Public Function CreateSvmLightLoader (catalog As DataOperationsCatalog, Optional numberOfRows As Nullable(Of Long) = Nothing, Optional inputSize As Integer = 0, Optional zeroBased As Boolean = false, Optional dataSample As IMultiStreamSource = Nothing) As SvmLightLoader

Parâmetros

numberOfRows
Nullable<Int64>

O número de linhas do exemplo a ser usado para determinar o número de recursos.

inputSize
Int32

O número de recursos na coluna Recursos. Se 0 for especificado, o carregador o determinará examinando o exemplo de arquivo dado em dataSample.

zeroBased
Boolean

Se o arquivo contiver índices baseados em zero, esse parâmetro deverá ser definido como true. Se eles forem baseados em um, ele deverá ser definido como false.

dataSample
IMultiStreamSource

Um exemplo de dados a ser usado para determinar o número de recursos na coluna Recursos.

Retornos

Exemplos

using System;
using System.IO;
using System.Text;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.DataOperations
{
    public static class LoadingSvmLight
    {
        // This examples shows how to load data with SvmLightLoader.
        public static void Example()
        {
            // Create a random SVM light format file.
            var random = new Random(42);
            var dataDirectoryName = "DataDir";
            Directory.CreateDirectory(dataDirectoryName);
            var fileName = Path.Combine(dataDirectoryName, $"SVM_Data.csv");
            using (var fs = File.CreateText(fileName))
            {
                // Write random lines in SVM light format
                for (int line = 0; line < 10; line++)
                {
                    var sb = new StringBuilder();
                    if (random.NextDouble() > 0.5)
                        sb.Append("1 ");
                    else
                        sb.Append("-1 ");
                    if (line % 2 == 0)
                        sb.Append("cost:1 ");
                    else
                        sb.Append("cost:2 ");
                    for (int i = 1; i <= 10; i++)
                    {
                        if (random.NextDouble() > 0.5)
                            continue;
                        sb.Append($"{i}:{random.NextDouble()} ");
                    }
                    fs.WriteLine(sb.ToString());
                }
            }

            // Create an SvmLightLoader.
            var mlContext = new MLContext();
            var file = new MultiFileSource(fileName);
            var loader = mlContext.Data.CreateSvmLightLoader(dataSample: file);

            // Load a single file from path.
            var svmData = loader.Load(file);

            PrintSchema(svmData);

            // Expected Output:
            // Column Label type Single
            // Column Weight type Single
            // Column GroupId type Key<UInt64, 0 - 18446744073709551613>
            // Column Comment type String
            // Column Features type Vector<Single, 10>

            PrintData(svmData);

            // Expected Output:
            // 1 1 0 0 0.2625927 0 0 0.7612506 0.2573214 0 0.3809696 0.5174511
            // -1 1 0 0 0 0.7051522 0 0 0.7111546 0.9062127 0 0
            // -1 1 0 0 0 0.535722 0 0 0.1491191 0.05100901 0 0
            // -1 1 0 0.6481459 0.04449836 0 0 0.4203662 0 0 0.01325378 0.2674384
            // -1 1 0 0 0.7978093 0.5134962 0.008952909 0 0.003074009 0.6541431 0.9135142 0
            // -1 1 0 0.3727672 0.4369507 0 0 0.2973725 0 0 0 0.8816807
            // 1 1 0 0.1031429 0.3332489 0 0.1346936 0.5916625 0 0 0 0
            // 1 1 0 0 0 0.3454075 0 0.2197472 0.03848049 0.5923384 0.09373277 0
            // -1 1 0 0.7511514 0 0.0420841 0 0 0.9262196 0 0.545344 0
            // 1 1 0 0.02958358 0.9334617 0 0 0.8833956 0.2947684 0 0 0

            // If the loader is created without a data sample we need to specify the number of features expected in the file.
            loader = mlContext.Data.CreateSvmLightLoader(inputSize: 10);
            svmData = loader.Load(file);

            PrintSchema(svmData);
            PrintData(svmData);
        }

        private static void PrintSchema(IDataView svmData)
        {
            foreach (var col in svmData.Schema)
                Console.WriteLine($"Column {col.Name} type {col.Type}");
        }

        private static void PrintData(IDataView svmData)
        {
            using (var cursor = svmData.GetRowCursor(svmData.Schema))
            {
                var labelGetter = cursor.GetGetter<float>(svmData.Schema["Label"]);
                var weightGetter = cursor.GetGetter<float>(svmData.Schema["Weight"]);
                var featuresGetter = cursor.GetGetter<VBuffer<float>>(svmData.Schema["Features"]);

                VBuffer<float> features = default;
                while (cursor.MoveNext())
                {
                    float label = default;
                    labelGetter(ref label);

                    float weight = default;
                    weightGetter(ref weight);

                    featuresGetter(ref features);

                    Console.WriteLine($"{label} {weight} {string.Join(' ', features.DenseValues())}");
                }
            }
        }
    }
}

Aplica-se a