Atualizar o ajuste de hiperparâmetro para o SDK v2
No SDK v2, os hiperparâmetros de ajuste são consolidados em trabalhos.
Um trabalho tem um tipo. A maioria dos trabalhos são trabalhos de comando que executam um command
, como python main.py
. O que é executado em um trabalho é independente de qualquer linguagem de programação, ou seja, você possa executar scripts bash
, invocar interpretadores python
, executar vários comandos curl
ou qualquer outra coisa.
Um trabalho de limpeza é outro tipo de trabalho, que define as configurações de limpeza e pode ser iniciado chamando o método de varredura de comando.
Para fazer o upgrade, você precisará alterar o código para definir e enviar o experimento de ajuste de hiperparâmetro para o SDK v2. O que você executa dentro do trabalho não precisa de upgrade para o SDK v2. No entanto, recomendamos remover qualquer código específico do Azure Machine Learning dos scripts de treinamento de modelo. Essa separação permite uma transição mais fácil entre o local e a nuvem e é considerada a melhor prática para um MLOps maduro. Na prática, isso significa remover as linhas de código azureml.*
. O log e o código de acompanhamento do modelo devem ser substituídos pelo MLflow. Para obter mais informações, confira Como usar o MLflow na v2.
Este artigo fornece uma comparação de cenários no SDK v1 e no SDK v2.
Executar ajuste de hiperparâmetro em um experimento
SDK v1
from azureml.core import ScriptRunConfig, Experiment, Workspace from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveConfig, PrimaryMetricGoal from azureml.train.hyperdrive import choice, loguniform dataset = Dataset.get_by_name(ws, 'mnist-dataset') # list the files referenced by mnist dataset dataset.to_path() #define the search space for your hyperparameters param_sampling = RandomParameterSampling( { '--batch-size': choice(25, 50, 100), '--first-layer-neurons': choice(10, 50, 200, 300, 500), '--second-layer-neurons': choice(10, 50, 200, 500), '--learning-rate': loguniform(-6, -1) } ) args = ['--data-folder', dataset.as_named_input('mnist').as_mount()] #Set up your script run src = ScriptRunConfig(source_directory=script_folder, script='keras_mnist.py', arguments=args, compute_target=compute_target, environment=keras_env) # Set early stopping on this one early_termination_policy = BanditPolicy(evaluation_interval=2, slack_factor=0.1) # Define the configurations for your hyperparameter tuning experiment hyperdrive_config = HyperDriveConfig(run_config=src, hyperparameter_sampling=param_sampling, policy=early_termination_policy, primary_metric_name='Accuracy', primary_metric_goal=PrimaryMetricGoal.MAXIMIZE, max_total_runs=20, max_concurrent_runs=4) # Specify your experiment details experiment = Experiment(workspace, experiment_name) hyperdrive_run = experiment.submit(hyperdrive_config) #Find the best model best_run = hyperdrive_run.get_best_run_by_primary_metric()
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml import command, Input from azure.ai.ml.sweep import Choice, Uniform, MedianStoppingPolicy from azure.identity import DefaultAzureCredential # Create your command command_job_for_sweep = command( code="./src", command="python main.py --iris-csv ${{inputs.iris_csv}} --learning-rate ${{inputs.learning_rate}} --boosting ${{inputs.boosting}}", environment="AzureML-lightgbm-3.2-ubuntu18.04-py37-cpu@latest", inputs={ "iris_csv": Input( type="uri_file", path="https://azuremlexamples.blob.core.windows.net/datasets/iris.csv", ), #define the search space for your hyperparameters "learning_rate": Uniform(min_value=0.01, max_value=0.9), "boosting": Choice(values=["gbdt", "dart"]), }, compute="cpu-cluster", ) # Call sweep() on your command job to sweep over your parameter expressions sweep_job = command_job_for_sweep.sweep( compute="cpu-cluster", sampling_algorithm="random", primary_metric="test-multi_logloss", goal="Minimize", ) # Define the limits for this sweep sweep_job.set_limits(max_total_trials=20, max_concurrent_trials=10, timeout=7200) # Set early stopping on this one sweep_job.early_termination = MedianStoppingPolicy(delay_evaluation=5, evaluation_interval=2) # Specify your experiment details sweep_job.display_name = "lightgbm-iris-sweep-example" sweep_job.experiment_name = "lightgbm-iris-sweep-example" sweep_job.description = "Run a hyperparameter sweep job for LightGBM on Iris dataset." # submit the sweep returned_sweep_job = ml_client.create_or_update(sweep_job) # get a URL for the status of the job returned_sweep_job.services["Studio"].endpoint # Download best trial model output ml_client.jobs.download(returned_sweep_job.name, output_name="model")
Executar ajuste de hiperparâmetro em um pipeline
SDK v1
tf_env = Environment.get(ws, name='AzureML-TensorFlow-2.0-GPU') data_folder = dataset.as_mount() src = ScriptRunConfig(source_directory=script_folder, script='tf_mnist.py', arguments=['--data-folder', data_folder], compute_target=compute_target, environment=tf_env) #Define HyperDrive configs ps = RandomParameterSampling( { '--batch-size': choice(25, 50, 100), '--first-layer-neurons': choice(10, 50, 200, 300, 500), '--second-layer-neurons': choice(10, 50, 200, 500), '--learning-rate': loguniform(-6, -1) } ) early_termination_policy = BanditPolicy(evaluation_interval=2, slack_factor=0.1) hd_config = HyperDriveConfig(run_config=src, hyperparameter_sampling=ps, policy=early_termination_policy, primary_metric_name='validation_acc', primary_metric_goal=PrimaryMetricGoal.MAXIMIZE, max_total_runs=4, max_concurrent_runs=4) metrics_output_name = 'metrics_output' metrics_data = PipelineData(name='metrics_data', datastore=datastore, pipeline_output_name=metrics_output_name, training_output=TrainingOutput("Metrics")) model_output_name = 'model_output' saved_model = PipelineData(name='saved_model', datastore=datastore, pipeline_output_name=model_output_name, training_output=TrainingOutput("Model", model_file="outputs/model/saved_model.pb")) #Create HyperDriveStep hd_step_name='hd_step01' hd_step = HyperDriveStep( name=hd_step_name, hyperdrive_config=hd_config, inputs=[data_folder], outputs=[metrics_data, saved_model]) #Find and register best model conda_dep = CondaDependencies() conda_dep.add_pip_package("azureml-sdk") rcfg = RunConfiguration(conda_dependencies=conda_dep) register_model_step = PythonScriptStep(script_name='register_model.py', name="register_model_step01", inputs=[saved_model], compute_target=cpu_cluster, arguments=["--saved-model", saved_model], allow_reuse=True, runconfig=rcfg) register_model_step.run_after(hd_step) #Run the pipeline pipeline = Pipeline(workspace=ws, steps=[hd_step, register_model_step]) pipeline_run = exp.submit(pipeline)
SDK v2
train_component_func = load_component(path="./train.yml") score_component_func = load_component(path="./predict.yml") # define a pipeline @pipeline() def pipeline_with_hyperparameter_sweep(): """Tune hyperparameters using sample components.""" train_model = train_component_func( data=Input( type="uri_file", path="wasbs://datasets@azuremlexamples.blob.core.windows.net/iris.csv", ), c_value=Uniform(min_value=0.5, max_value=0.9), kernel=Choice(["rbf", "linear", "poly"]), coef0=Uniform(min_value=0.1, max_value=1), degree=3, gamma="scale", shrinking=False, probability=False, tol=0.001, cache_size=1024, verbose=False, max_iter=-1, decision_function_shape="ovr", break_ties=False, random_state=42, ) sweep_step = train_model.sweep( primary_metric="training_f1_score", goal="minimize", sampling_algorithm="random", compute="cpu-cluster", ) sweep_step.set_limits(max_total_trials=20, max_concurrent_trials=10, timeout=7200) score_data = score_component_func( model=sweep_step.outputs.model_output, test_data=sweep_step.outputs.test_data ) pipeline_job = pipeline_with_hyperparameter_sweep() # set pipeline level compute pipeline_job.settings.default_compute = "cpu-cluster" # submit job to workspace pipeline_job = ml_client.jobs.create_or_update( pipeline_job, experiment_name="pipeline_samples" ) pipeline_job
Mapeamento da funcionalidade de chave no SDK v1 e no SDK v2
Funcionalidade no SDK v1 | Mapeamento aproximado no SDK v2 |
---|---|
HyperDriveRunConfig() | SweepJob() |
Pacote de hyperdrive | pacote de Limpeza |
Próximas etapas
Para obter mais informações, consulte: