Compartilhar via


Enriquecer os eventos do Apache Kafka® com atributos do ADLS Gen2 com o Apache Flink

Observação

Desativaremos o Microsoft Azure HDInsight no AKS em 31 de janeiro de 2025. Para evitar o encerramento abrupto das suas cargas de trabalho, você precisará migrá-las para o Microsoft Fabric ou para um produto equivalente do Azure antes de 31 de janeiro de 2025. Os clusters restantes em sua assinatura serão interrompidos e removidos do host.

Somente o suporte básico estará disponível até a data de desativação.

Importante

Esse recurso está atualmente na visualização. Os Termos de uso complementares para versões prévias do Microsoft Azure incluem mais termos legais que se aplicam aos recursos do Azure que estão em versão beta, em versão prévia ou ainda não lançados em disponibilidade geral. Para obter informações sobre essa versão prévia específica, confira Informações sobre a versão prévia do Azure HDInsight no AKS. No caso de perguntas ou sugestões de recursos, envie uma solicitação no AskHDInsight com os detalhes e siga-nos para ver mais atualizações sobre a Comunidade do Azure HDInsight.

Neste artigo, você saberá como enriquecer os eventos em tempo real unindo um fluxo do Kafka com tabela no ADLS Gen2 usando o Flink Streaming. Usamos a API de Streaming do Flink para unir eventos do HDInsight Kafka com atributos do ADLS Gen2. Além disso, usamos os eventos ingressados por atributos para coletar em outro tópico do Kafka.

Pré-requisitos

Preparação do tópico do Kafka

Estamos criando um tópico chamado user_events.

  • A finalidade é ler um fluxo de eventos em tempo real de um tópico do Kafka usando Flink. Temos todos os eventos com os seguintes campos:
    user_id,
    item_id, 
    type, 
    timestamp, 
    

Kafka 3.2.0

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --replication-factor 2 --partitions 3 --topic user_events --bootstrap-server wn0-contsk:9092
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --replication-factor 2 --partitions 3 --topic user_events_output --bootstrap-server wn0-contsk:9092

Preparar o arquivo no ADLS Gen2

Estamos criando um arquivo chamado item attributes em nosso armazenamento

  • A finalidade é ler um lote de item attributes de um arquivo no ADLS Gen2. Cada item tem os seguintes campos:
    item_id, 
    brand, 
    category, 
    timestamp, 
    

Captura de tela mostrando Preparar um arquivo de atributos de itens em lote no ADLS Gen2.

Nesta etapa, realizamos as seguintes atividades

  • Enriqueça o tópico user_events do Kafka unindo-se a item attributes de um arquivo no ADLS Gen2.
  • Enviamos por push o resultado dessa etapa, como uma atividade enriquecida do usuário de eventos em um tópico do Kafka.

Desenvolver um projeto Maven

pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>contoso.example</groupId>
    <artifactId>FlinkKafkaJoinGen2</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <flink.version>1.17.0</flink.version>
        <java.version>1.8</java.version>
        <scala.binary.version>2.12</scala.binary.version>
        <kafka.version>3.2.0</kafka.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-files -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-files</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
            <version>${flink.version}</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <appendAssemblyId>false</appendAssemblyId>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

Ingressar no tópico do Kafka com o arquivo ADLS Gen2

KafkaJoinGen2Demo.java

package contoso.example;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.api.java.tuple.Tuple7;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.connector.kafka.sink.KafkaRecordSerializationSchema;
import org.apache.flink.connector.kafka.sink.KafkaSink;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.io.BufferedReader;
import java.io.FileReader;
import java.util.HashMap;
import java.util.Map;

public class KafkaJoinGen2Demo {
    public static void main(String[] args) throws Exception {
        // 1. Set up the stream execution environment
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // Kafka source configuration, update with your broker IPs
        String brokers = "<broker-ip>:9092,<broker-ip>:9092,<broker-ip>:9092";
        String inputTopic = "user_events";
        String outputTopic = "user_events_output";
        String groupId = "my_group";

        // 2. Register the cached file, update your container name and storage name
        env.registerCachedFile("abfs://<container-name>@<storagename>.dfs.core.windows.net/flink/data/item.txt", "file1");

        // 3. Read a stream of real-time user behavior event from a Kafka topic
        KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
                .setBootstrapServers(brokers)
                .setTopics(inputTopic)
                .setGroupId(groupId)
                .setStartingOffsets(OffsetsInitializer.earliest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();

        DataStream<String> kafkaData = env.fromSource(kafkaSource, WatermarkStrategy.noWatermarks(), "Kafka Source");

        // Parse Kafka source data
      DataStream<Tuple4<String, String, String, String>> userEvents = kafkaData.map(new MapFunction<String, Tuple4<String, String, String, String>>() {
          @Override
          public Tuple4<String, String, String, String> map(String value) throws Exception {
              // Parse the line into a Tuple4
              String[] parts = value.split(",");
              if (parts.length < 4) {
                  // Log and skip malformed record
                  System.out.println("Malformed record: " + value);
                  return null;
              }
              return new Tuple4<>(parts[0], parts[1], parts[2], parts[3]);
           }
       });

        // 4. Enrich the user activity events by joining the items' attributes from a file
        DataStream<Tuple7<String,String,String,String,String,String,String>> enrichedData = userEvents.map(new MyJoinFunction());

        // 5. Output the enriched user activity events to a Kafka topic
        KafkaSink<String> sink = KafkaSink.<String>builder()
                .setBootstrapServers(brokers)
                .setRecordSerializer(KafkaRecordSerializationSchema.builder()
                        .setTopic(outputTopic)
                        .setValueSerializationSchema(new SimpleStringSchema())
                        .build()
                )
                .build();

        enrichedData.map(value -> value.toString()).sinkTo(sink);

        // 6. Execute the Flink job
        env.execute("Kafka Join Batch gen2 file, sink to another Kafka Topic");
    }

    private static class MyJoinFunction extends RichMapFunction<Tuple4<String,String,String,String>, Tuple7<String,String,String,String,String,String,String>> {
        private Map<String, Tuple4<String, String, String, String>> itemAttributes;

        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);

            // Read the cached file and parse its contents into a map
            itemAttributes = new HashMap<>();
            try (BufferedReader reader = new BufferedReader(new FileReader(getRuntimeContext().getDistributedCache().getFile("file1")))) {
                String line;
                while ((line = reader.readLine()) != null) {
                    String[] parts = line.split(",");
                    itemAttributes.put(parts[0], new Tuple4<>(parts[0], parts[1], parts[2], parts[3]));
                }
            }
        }

        @Override
        public Tuple7<String,String,String,String,String,String,String> map(Tuple4<String,String,String,String> value) throws Exception {
            Tuple4<String, String, String, String> broadcastValue = itemAttributes.get(value.f1);
            if (broadcastValue != null) {
                return Tuple7.of(value.f0,value.f1,value.f2,value.f3,broadcastValue.f1,broadcastValue.f2,broadcastValue.f3);
            } else {
                return null;
            }
        }
    }
}

Estamos enviando o jar empacotado para o Flink:

Captura de tela mostrando o empacotamento do jar e o envio ao Flink com o Kafka 3.2.

Captura de tela mostrando o empacotamento do jar e o envio para o Flink como etapa adicional com o Kafka 3.2.

Produzir o tópico user_events em tempo real no Kafka

Conseguimos produzir o evento de comportamento do usuário em tempo real user_events no Kafka.

Captura de tela mostrando um evento de comportamento do usuário em tempo real no Kafka 3.2.

Consumir a junção itemAttributes com user_events no Kafka

Agora estamos usando itemAttributes nos eventos de atividade do usuário de ingresso no sistema de arquivos user_events.

Captura de tela mostrando a Consumação dos eventos de atividade do usuário, com atributos ingressados, no Kafka 3.2.

Continuamos a produzir e consumir a atividade do usuário e os atributos de item nas imagens a seguir

Captura de tela mostrando como continuamos a produzir um evento de comportamento do usuário em tempo real no Kafka 3.2.

Captura de tela mostrando como continuamos a consumir os atributos do item eventos de atividades do usuário ingressados por atributos no Kafka.

Referência