Como usar modelos de chat Mistral-7B e Mixtral
Importante
Os itens marcados (versão prévia) neste artigo estão atualmente em versão prévia pública. Essa versão prévia é fornecida sem um contrato de nível de serviço e não recomendamos isso para cargas de trabalho de produção. Alguns recursos podem não ter suporte ou podem ter restrição de recursos. Para obter mais informações, consulte Termos de Uso Complementares de Versões Prévias do Microsoft Azure.
Neste artigo, você aprenderá sobre os modelos de chat Mistral-7B e Mixtral e como usá-los. O Mistral AI oferece duas categorias de modelos. Modelos Premium, incluindo Mistral Large e Mistral Small, disponíveis como APIs sem servidor com cobrança baseada em token paga conforme o uso. Abra modelos incluindo Mistral Nemo, Mixtral-8x7B-Instruct-v01, Mixtral-8x7B-v01, Mistral-7B-Instruct-v01 e Mistral-7B-v01; disponíveis para também baixar e executar em pontos de extremidade gerenciados auto-hospedados.
Importante
Os modelos que estão em versão prévia são marcados como versão prévia em seus cartões de modelo no catálogo de modelos.
Modelos de chat Mistral-7B e Mixtral
Os modelos de chat Mistral-7B e Mixtral incluem os seguintes modelos:
O Modelo de Linguagem Grande (LLM) Mistral-7B-Instruct é uma versão instruída e ajustada do Mistral-7B, um modelo de transformador com as seguintes opções de arquitetura:
- Atenção de consulta agrupada
- Atenção de janela deslizante
- Token de BPE de fallback de byte
Os seguintes modelos estão disponíveis:
Dica
Além disso, o MistralAI dá suporte ao uso de uma API personalizada para uso com recursos específicos do modelo. Para usar a API específica do provedor de modelos, verifique a documentação do MistralAI ou veja a seção de exemplos de inferência para codificar exemplos.
Pré-requisitos
Para usar modelos de chat Mistral-7B e Mixtral com o Estúdio de IA do Azure, você precisa dos seguintes pré-requisitos:
Uma implantação de modelo
Implantação em uma computação gerenciada auto-hospedada
Os modelos de chat Mistral-7B e Mixtral podem ser implantados em nossa solução de inferência gerenciada auto-hospedada, que permite personalizar e controlar todos os detalhes sobre como o modelo é servido.
Para implantação em uma computação gerenciada auto-hospedada, você deve ter cota suficiente em sua assinatura. Se você não tiver cota suficiente disponível, poderá usar nosso acesso temporário de cota selecionando a opção Quero usar cota compartilhada e reconheço que esse ponto de extremidade será excluído em 168 horas.
O pacote de inferência instalado
Você pode consumir previsões desse modelo usando o pacote azure-ai-inference
com Python. Para instalar esse pacote, você precisa atender aos seguintes pré-requisitos:
- Python 3.8 ou posterior instalado, incluindo o pip.
- O URL do ponto de extremidade. Para criar a biblioteca de clientes, você precisa transmitir o URL do ponto de extremidade. O URL do ponto de extremidade tem o formulário
https://your-host-name.your-azure-region.inference.ai.azure.com
, em queyour-host-name
é o nome de host exclusivo da implantação do modelo eyour-azure-region
é a região do Azure em que o modelo é implantado (por exemplo, eastus2). - Dependendo da sua preferência de autenticação e implantação de modelos, você precisará de uma chave para autenticação no serviço ou de credenciais do Microsoft Entra ID. A chave é uma cadeia de caracteres de 32 caracteres.
Depois de atender aos pré-requisitos, instale o pacote de inferência da IA do Azure com o seguinte comando:
pip install azure-ai-inference
Saiba mais sobre o Pacote de inferência da IA do Azure e referências.
Trabalhar com conclusões de chat
Nesta seção, você usa a API de inferência de modelo da IA do Azure com um modelo de conclusões para chat.
Dica
A API de inferência do modelo de IA do Azure permite que você converse com a maioria dos modelos implantados no Estúdio de IA do Azure com o mesmo código e estrutura, incluindo modelos de chat Mistral-7B e Mixtral.
Criar um cliente para consumir o modelo
Primeiro, crie o cliente para consumir o modelo. O código a seguir usa uma URL de ponto de extremidade e uma chave que são armazenadas em variáveis de ambiente.
import os
from azure.ai.inference import ChatCompletionsClient
from azure.core.credentials import AzureKeyCredential
client = ChatCompletionsClient(
endpoint=os.environ["AZURE_INFERENCE_ENDPOINT"],
credential=AzureKeyCredential(os.environ["AZURE_INFERENCE_CREDENTIAL"]),
)
Ao implantar o modelo em um ponto de extremidade online auto-hospedado com suporte ao Microsoft Entra ID, você pode usar o trecho de código a seguir para criar um cliente.
import os
from azure.ai.inference import ChatCompletionsClient
from azure.identity import DefaultAzureCredential
client = ChatCompletionsClient(
endpoint=os.environ["AZURE_INFERENCE_ENDPOINT"],
credential=DefaultAzureCredential(),
)
Obter os recursos do modelo
A rota /info
retorna informações sobre o modelo que é implantado no ponto de extremidade. Retorne as informações do modelo chamando o seguinte método:
model_info = client.get_model_info()
A resposta é a seguinte:
print("Model name:", model_info.model_name)
print("Model type:", model_info.model_type)
print("Model provider name:", model_info.model_provider_name)
Model name: mistralai-Mistral-7B-Instruct-v01
Model type: chat-completions
Model provider name: MistralAI
Como criar uma solicitação de conclusão de chat
O exemplo a seguir mostra como você pode criar uma solicitação básica de conclusões de chat para o modelo.
from azure.ai.inference.models import SystemMessage, UserMessage
response = client.complete(
messages=[
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="How many languages are in the world?"),
],
)
Observação
mistralai-Mistral-7B-Instruct-v01, mistralai-Mistral-7B-Instruct-v02 e mistralai-Mixtral-8x22B-Instruct-v0-1 não dão suporte a mensagens do sistema (role="system"
). Quando você usa a API de inferência do modelo de IA do Azure, as mensagens do sistema são traduzidas para mensagens de usuário, que é a funcionalidade mais próxima disponível. Essa tradução é oferecida para conveniência, mas é importante verificar se o modelo está seguindo as instruções na mensagem do sistema com o nível certo de confiança.
A resposta é a seguinte, em que você pode ver as estatísticas de uso do modelo:
print("Response:", response.choices[0].message.content)
print("Model:", response.model)
print("Usage:")
print("\tPrompt tokens:", response.usage.prompt_tokens)
print("\tTotal tokens:", response.usage.total_tokens)
print("\tCompletion tokens:", response.usage.completion_tokens)
Response: As of now, it's estimated that there are about 7,000 languages spoken around the world. However, this number can vary as some languages become extinct and new ones develop. It's also important to note that the number of speakers can greatly vary between languages, with some having millions of speakers and others only a few hundred.
Model: mistralai-Mistral-7B-Instruct-v01
Usage:
Prompt tokens: 19
Total tokens: 91
Completion tokens: 72
Inspecione a seção usage
na resposta para conferir o número de tokens usados para a solicitação, o número total de tokens gerados e o número de tokens usados para a conclusão.
Como transmitir conteúdos
Por padrão, a API de conclusões retorna todo o conteúdo gerado em uma única resposta. Ao gerar conclusões longas, você pode precisar aguardar a resposta por muitos segundos.
É possível transmitir o conteúdo para recebê-lo à medida que ele é gerado. Ao transmitir o conteúdo, é possível começar a processar a conclusão à medida que ele se torna disponível. Esse modo retorna um objeto que transmite de volta a resposta na forma de eventos somente de dados enviados pelo servidor. Extraia partes do campo delta, em vez do campo de mensagem.
result = client.complete(
messages=[
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="How many languages are in the world?"),
],
temperature=0,
top_p=1,
max_tokens=2048,
stream=True,
)
Para transmitir conclusões, defina stream=True
ao chamar o modelo.
Para exibir a saída, defina uma função auxiliar a fim de imprimir a transmissão.
def print_stream(result):
"""
Prints the chat completion with streaming.
"""
import time
for update in result:
if update.choices:
print(update.choices[0].delta.content, end="")
É possível observar como o streaming gera conteúdos:
print_stream(result)
Como explorar outros parâmetros com suporte do cliente de inferência
Confira outros parâmetros que podem ser especificados no cliente de inferência. Para obter uma lista completa de todos os parâmetros com suporte e da documentação correspondente, consulte a Referência da API de inferência de modelo da IA do Azure.
from azure.ai.inference.models import ChatCompletionsResponseFormatText
response = client.complete(
messages=[
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="How many languages are in the world?"),
],
presence_penalty=0.1,
frequency_penalty=0.8,
max_tokens=2048,
stop=["<|endoftext|>"],
temperature=0,
top_p=1,
response_format={ "type": ChatCompletionsResponseFormatText() },
)
Aviso
Modelos da Mistral não dão suporte à formatação com saída JSON (response_format = { "type": "json_object" }
). Você sempre pode solicitar que o modelo gere saídas JSON. No entanto, não há garantia de que essas saídas estejam em formato JSON válido.
Para transmitir um parâmetro que não está na lista de parâmetros com suporte, faça a transmissão para o modelo subjacente usando parâmetros extras. Consulte Transmitir parâmetros extras ao modelo.
Como transmitir parâmetros extras ao modelo
A API de inferência de modelo da IA do Azure permite transmitir parâmetros extras ao modelo. O exemplo de código a seguir mostra como transmitir o parâmetro extra logprobs
ao modelo.
Antes de transmitir parâmetros extras à API de inferência de modelo da IA do Azure, verifique se o modelo dá suporte a esses parâmetros. Quando a solicitação é feita ao modelo subjacente, o cabeçalho extra-parameters
é transmitido a ele com o valor pass-through
. Esse valor indica que o ponto de extremidade deve transmitir os parâmetros extras ao modelo. O uso de parâmetros extras com o modelo não garante que ele possa realmente lidar com eles. Leia a documentação do modelo para entender quais parâmetros extras têm suporte.
response = client.complete(
messages=[
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="How many languages are in the world?"),
],
model_extras={
"logprobs": True
}
)
Os seguintes parâmetros extras podem ser passados para modelos de chat Mistral-7B e Mixtral:
Nome | Descrição | Type |
---|---|---|
logit_bias |
Aceita um objeto JSON que mapeia tokens (especificados por sua ID de token no tokenizer) para um valor de viés associado de -100 a 100. Matematicamente, o desvio é adicionado aos logits gerados pelo modelo antes da amostragem. O efeito exato varia de acordo com o modelo, mas os valores entre -1 e 1 deverão diminuir ou aumentar a probabilidade da seleção, os valores como -100 ou 100 deverão resultar em uma proibição ou seleção exclusiva do token relevante. | float |
logprobs |
Se você quer retornar as probabilidades de log dos tokens de saída ou não. Se for true, retornará as probabilidades de log de cada token de saída retornado no content da message . |
int |
top_logprobs |
Um inteiro entre 0 e 20 especificando o número de tokens mais prováveis a serem retornados em cada posição de token, cada um com uma probabilidade de log associada. logprobs precisa estar definido como true se esse parâmetro for usado. |
float |
n |
Quantas opções de preenchimento de chat serão geradas para cada mensagem de entrada. Observe que você será cobrado com base no número de tokens gerados em todas as opções. | int |
Modelos de chat Mistral-7B e Mixtral
Os modelos de chat Mistral-7B e Mixtral incluem os seguintes modelos:
O Modelo de Linguagem Grande (LLM) Mistral-7B-Instruct é uma versão instruída e ajustada do Mistral-7B, um modelo de transformador com as seguintes opções de arquitetura:
- Atenção de consulta agrupada
- Atenção de janela deslizante
- Token de BPE de fallback de byte
Os seguintes modelos estão disponíveis:
Dica
Além disso, o MistralAI dá suporte ao uso de uma API personalizada para uso com recursos específicos do modelo. Para usar a API específica do provedor de modelos, verifique a documentação do MistralAI ou veja a seção de exemplos de inferência para codificar exemplos.
Pré-requisitos
Para usar modelos de chat Mistral-7B e Mixtral com o Estúdio de IA do Azure, você precisa dos seguintes pré-requisitos:
Uma implantação de modelo
Implantação em uma computação gerenciada auto-hospedada
Os modelos de chat Mistral-7B e Mixtral podem ser implantados em nossa solução de inferência gerenciada auto-hospedada, que permite personalizar e controlar todos os detalhes sobre como o modelo é servido.
Para implantação em uma computação gerenciada auto-hospedada, você deve ter cota suficiente em sua assinatura. Se você não tiver cota suficiente disponível, poderá usar nosso acesso temporário de cota selecionando a opção Quero usar cota compartilhada e reconheço que esse ponto de extremidade será excluído em 168 horas.
O pacote de inferência instalado
Você pode consumir previsões desse modelo usando o pacote @azure-rest/ai-inference
de npm
. Para instalar esse pacote, você precisa atender aos seguintes pré-requisitos:
- Versões LTS de
Node.js
comnpm
. - O URL do ponto de extremidade. Para criar a biblioteca de clientes, você precisa transmitir o URL do ponto de extremidade. O URL do ponto de extremidade tem o formulário
https://your-host-name.your-azure-region.inference.ai.azure.com
, em queyour-host-name
é o nome de host exclusivo da implantação do modelo eyour-azure-region
é a região do Azure em que o modelo é implantado (por exemplo, eastus2). - Dependendo da sua preferência de autenticação e implantação de modelos, você precisará de uma chave para autenticação no serviço ou de credenciais do Microsoft Entra ID. A chave é uma cadeia de caracteres de 32 caracteres.
Depois de atender a esses pré-requisitos, instale a biblioteca de inferência do Azure para JavaScript com o seguinte comando:
npm install @azure-rest/ai-inference
Como trabalhar com conclusões de chat
Nesta seção, você usa a API de inferência de modelo da IA do Azure com um modelo de conclusões para chat.
Dica
A API de inferência do modelo de IA do Azure permite que você converse com a maioria dos modelos implantados no Estúdio de IA do Azure com o mesmo código e estrutura, incluindo modelos de chat Mistral-7B e Mixtral.
Criar um cliente para consumir o modelo
Primeiro, crie o cliente para consumir o modelo. O código a seguir usa uma URL de ponto de extremidade e uma chave que são armazenadas em variáveis de ambiente.
import ModelClient from "@azure-rest/ai-inference";
import { isUnexpected } from "@azure-rest/ai-inference";
import { AzureKeyCredential } from "@azure/core-auth";
const client = new ModelClient(
process.env.AZURE_INFERENCE_ENDPOINT,
new AzureKeyCredential(process.env.AZURE_INFERENCE_CREDENTIAL)
);
Ao implantar o modelo em um ponto de extremidade online auto-hospedado com suporte ao Microsoft Entra ID, você pode usar o trecho de código a seguir para criar um cliente.
import ModelClient from "@azure-rest/ai-inference";
import { isUnexpected } from "@azure-rest/ai-inference";
import { DefaultAzureCredential } from "@azure/identity";
const client = new ModelClient(
process.env.AZURE_INFERENCE_ENDPOINT,
new DefaultAzureCredential()
);
Obter os recursos do modelo
A rota /info
retorna informações sobre o modelo que é implantado no ponto de extremidade. Retorne as informações do modelo chamando o seguinte método:
var model_info = await client.path("/info").get()
A resposta é a seguinte:
console.log("Model name: ", model_info.body.model_name)
console.log("Model type: ", model_info.body.model_type)
console.log("Model provider name: ", model_info.body.model_provider_name)
Model name: mistralai-Mistral-7B-Instruct-v01
Model type: chat-completions
Model provider name: MistralAI
Como criar uma solicitação de conclusão de chat
O exemplo a seguir mostra como você pode criar uma solicitação básica de conclusões de chat para o modelo.
var messages = [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: "How many languages are in the world?" },
];
var response = await client.path("/chat/completions").post({
body: {
messages: messages,
}
});
Observação
mistralai-Mistral-7B-Instruct-v01, mistralai-Mistral-7B-Instruct-v02 e mistralai-Mixtral-8x22B-Instruct-v0-1 não dão suporte a mensagens do sistema (role="system"
). Quando você usa a API de inferência do modelo de IA do Azure, as mensagens do sistema são traduzidas para mensagens de usuário, que é a funcionalidade mais próxima disponível. Essa tradução é oferecida para conveniência, mas é importante verificar se o modelo está seguindo as instruções na mensagem do sistema com o nível certo de confiança.
A resposta é a seguinte, em que você pode ver as estatísticas de uso do modelo:
if (isUnexpected(response)) {
throw response.body.error;
}
console.log("Response: ", response.body.choices[0].message.content);
console.log("Model: ", response.body.model);
console.log("Usage:");
console.log("\tPrompt tokens:", response.body.usage.prompt_tokens);
console.log("\tTotal tokens:", response.body.usage.total_tokens);
console.log("\tCompletion tokens:", response.body.usage.completion_tokens);
Response: As of now, it's estimated that there are about 7,000 languages spoken around the world. However, this number can vary as some languages become extinct and new ones develop. It's also important to note that the number of speakers can greatly vary between languages, with some having millions of speakers and others only a few hundred.
Model: mistralai-Mistral-7B-Instruct-v01
Usage:
Prompt tokens: 19
Total tokens: 91
Completion tokens: 72
Inspecione a seção usage
na resposta para conferir o número de tokens usados para a solicitação, o número total de tokens gerados e o número de tokens usados para a conclusão.
Como transmitir conteúdos
Por padrão, a API de conclusões retorna todo o conteúdo gerado em uma única resposta. Ao gerar conclusões longas, você pode precisar aguardar a resposta por muitos segundos.
É possível transmitir o conteúdo para recebê-lo à medida que ele é gerado. Ao transmitir o conteúdo, é possível começar a processar a conclusão à medida que ele se torna disponível. Esse modo retorna um objeto que transmite de volta a resposta na forma de eventos somente de dados enviados pelo servidor. Extraia partes do campo delta, em vez do campo de mensagem.
var messages = [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: "How many languages are in the world?" },
];
var response = await client.path("/chat/completions").post({
body: {
messages: messages,
}
}).asNodeStream();
Para transmitir conclusões, use .asNodeStream()
ao chamar o modelo.
É possível observar como o streaming gera conteúdos:
var stream = response.body;
if (!stream) {
stream.destroy();
throw new Error(`Failed to get chat completions with status: ${response.status}`);
}
if (response.status !== "200") {
throw new Error(`Failed to get chat completions: ${response.body.error}`);
}
var sses = createSseStream(stream);
for await (const event of sses) {
if (event.data === "[DONE]") {
return;
}
for (const choice of (JSON.parse(event.data)).choices) {
console.log(choice.delta?.content ?? "");
}
}
Como explorar outros parâmetros com suporte do cliente de inferência
Confira outros parâmetros que podem ser especificados no cliente de inferência. Para obter uma lista completa de todos os parâmetros com suporte e da documentação correspondente, consulte a Referência da API de inferência de modelo da IA do Azure.
var messages = [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: "How many languages are in the world?" },
];
var response = await client.path("/chat/completions").post({
body: {
messages: messages,
presence_penalty: "0.1",
frequency_penalty: "0.8",
max_tokens: 2048,
stop: ["<|endoftext|>"],
temperature: 0,
top_p: 1,
response_format: { type: "text" },
}
});
Aviso
Modelos da Mistral não dão suporte à formatação com saída JSON (response_format = { "type": "json_object" }
). Você sempre pode solicitar que o modelo gere saídas JSON. No entanto, não há garantia de que essas saídas estejam em formato JSON válido.
Para transmitir um parâmetro que não está na lista de parâmetros com suporte, faça a transmissão para o modelo subjacente usando parâmetros extras. Consulte Transmitir parâmetros extras ao modelo.
Como transmitir parâmetros extras ao modelo
A API de inferência de modelo da IA do Azure permite transmitir parâmetros extras ao modelo. O exemplo de código a seguir mostra como transmitir o parâmetro extra logprobs
ao modelo.
Antes de transmitir parâmetros extras à API de inferência de modelo da IA do Azure, verifique se o modelo dá suporte a esses parâmetros. Quando a solicitação é feita ao modelo subjacente, o cabeçalho extra-parameters
é transmitido a ele com o valor pass-through
. Esse valor indica que o ponto de extremidade deve transmitir os parâmetros extras ao modelo. O uso de parâmetros extras com o modelo não garante que ele possa realmente lidar com eles. Leia a documentação do modelo para entender quais parâmetros extras têm suporte.
var messages = [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: "How many languages are in the world?" },
];
var response = await client.path("/chat/completions").post({
headers: {
"extra-params": "pass-through"
},
body: {
messages: messages,
logprobs: true
}
});
Os seguintes parâmetros extras podem ser passados para modelos de chat Mistral-7B e Mixtral:
Nome | Descrição | Type |
---|---|---|
logit_bias |
Aceita um objeto JSON que mapeia tokens (especificados por sua ID de token no tokenizer) para um valor de viés associado de -100 a 100. Matematicamente, o desvio é adicionado aos logits gerados pelo modelo antes da amostragem. O efeito exato varia de acordo com o modelo, mas os valores entre -1 e 1 deverão diminuir ou aumentar a probabilidade da seleção, os valores como -100 ou 100 deverão resultar em uma proibição ou seleção exclusiva do token relevante. | float |
logprobs |
Se você quer retornar as probabilidades de log dos tokens de saída ou não. Se for true, retornará as probabilidades de log de cada token de saída retornado no content da message . |
int |
top_logprobs |
Um inteiro entre 0 e 20 especificando o número de tokens mais prováveis a serem retornados em cada posição de token, cada um com uma probabilidade de log associada. logprobs precisa estar definido como true se esse parâmetro for usado. |
float |
n |
Quantas opções de preenchimento de chat serão geradas para cada mensagem de entrada. Observe que você será cobrado com base no número de tokens gerados em todas as opções. | int |
Modelos de chat Mistral-7B e Mixtral
Os modelos de chat Mistral-7B e Mixtral incluem os seguintes modelos:
O Modelo de Linguagem Grande (LLM) Mistral-7B-Instruct é uma versão instruída e ajustada do Mistral-7B, um modelo de transformador com as seguintes opções de arquitetura:
- Atenção de consulta agrupada
- Atenção de janela deslizante
- Token de BPE de fallback de byte
Os seguintes modelos estão disponíveis:
Dica
Além disso, o MistralAI dá suporte ao uso de uma API personalizada para uso com recursos específicos do modelo. Para usar a API específica do provedor de modelos, verifique a documentação do MistralAI ou veja a seção de exemplos de inferência para codificar exemplos.
Pré-requisitos
Para usar modelos de chat Mistral-7B e Mixtral com o Estúdio de IA do Azure, você precisa dos seguintes pré-requisitos:
Uma implantação de modelo
Implantação em uma computação gerenciada auto-hospedada
Os modelos de chat Mistral-7B e Mixtral podem ser implantados em nossa solução de inferência gerenciada auto-hospedada, que permite personalizar e controlar todos os detalhes sobre como o modelo é servido.
Para implantação em uma computação gerenciada auto-hospedada, você deve ter cota suficiente em sua assinatura. Se você não tiver cota suficiente disponível, poderá usar nosso acesso temporário de cota selecionando a opção Quero usar cota compartilhada e reconheço que esse ponto de extremidade será excluído em 168 horas.
O pacote de inferência instalado
Você pode consumir as previsões desse modelo usando o pacote Azure.AI.Inference
do NuGet. Para instalar esse pacote, você precisa atender aos seguintes pré-requisitos:
- O URL do ponto de extremidade. Para criar a biblioteca de clientes, você precisa transmitir o URL do ponto de extremidade. O URL do ponto de extremidade tem o formulário
https://your-host-name.your-azure-region.inference.ai.azure.com
, em queyour-host-name
é o nome de host exclusivo da implantação do modelo eyour-azure-region
é a região do Azure em que o modelo é implantado (por exemplo, eastus2). - Dependendo da sua preferência de autenticação e implantação de modelos, você precisará de uma chave para autenticação no serviço ou de credenciais do Microsoft Entra ID. A chave é uma cadeia de caracteres de 32 caracteres.
Depois de atender a esses pré-requisitos, instale a biblioteca de inferência da IA do Azure com o seguinte comando:
dotnet add package Azure.AI.Inference --prerelease
Também é possível realizar a autenticação com o Microsoft Entra ID (antigo Azure Active Directory). Para usar os provedores de credenciais fornecidos com o SDK do Azure, instale o pacote Azure.Identity
:
dotnet add package Azure.Identity
Importe os seguintes namespaces:
using Azure;
using Azure.Identity;
using Azure.AI.Inference;
Esse exemplo também usa os seguintes namespaces, mas você nem sempre precisará deles:
using System.Text.Json;
using System.Text.Json.Serialization;
using System.Reflection;
Como trabalhar com conclusões de chat
Nesta seção, você usa a API de inferência de modelo da IA do Azure com um modelo de conclusões para chat.
Dica
A API de inferência do modelo de IA do Azure permite que você converse com a maioria dos modelos implantados no Estúdio de IA do Azure com o mesmo código e estrutura, incluindo modelos de chat Mistral-7B e Mixtral.
Criar um cliente para consumir o modelo
Primeiro, crie o cliente para consumir o modelo. O código a seguir usa uma URL de ponto de extremidade e uma chave que são armazenadas em variáveis de ambiente.
ChatCompletionsClient client = new ChatCompletionsClient(
new Uri(Environment.GetEnvironmentVariable("AZURE_INFERENCE_ENDPOINT")),
new AzureKeyCredential(Environment.GetEnvironmentVariable("AZURE_INFERENCE_CREDENTIAL"))
);
Ao implantar o modelo em um ponto de extremidade online auto-hospedado com suporte ao Microsoft Entra ID, você pode usar o trecho de código a seguir para criar um cliente.
client = new ChatCompletionsClient(
new Uri(Environment.GetEnvironmentVariable("AZURE_INFERENCE_ENDPOINT")),
new DefaultAzureCredential(includeInteractiveCredentials: true)
);
Obter os recursos do modelo
A rota /info
retorna informações sobre o modelo que é implantado no ponto de extremidade. Retorne as informações do modelo chamando o seguinte método:
Response<ModelInfo> modelInfo = client.GetModelInfo();
A resposta é a seguinte:
Console.WriteLine($"Model name: {modelInfo.Value.ModelName}");
Console.WriteLine($"Model type: {modelInfo.Value.ModelType}");
Console.WriteLine($"Model provider name: {modelInfo.Value.ModelProviderName}");
Model name: mistralai-Mistral-7B-Instruct-v01
Model type: chat-completions
Model provider name: MistralAI
Como criar uma solicitação de conclusão de chat
O exemplo a seguir mostra como você pode criar uma solicitação básica de conclusões de chat para o modelo.
ChatCompletionsOptions requestOptions = new ChatCompletionsOptions()
{
Messages = {
new ChatRequestSystemMessage("You are a helpful assistant."),
new ChatRequestUserMessage("How many languages are in the world?")
},
};
Response<ChatCompletions> response = client.Complete(requestOptions);
Observação
mistralai-Mistral-7B-Instruct-v01, mistralai-Mistral-7B-Instruct-v02 e mistralai-Mixtral-8x22B-Instruct-v0-1 não dão suporte a mensagens do sistema (role="system"
). Quando você usa a API de inferência do modelo de IA do Azure, as mensagens do sistema são traduzidas para mensagens de usuário, que é a funcionalidade mais próxima disponível. Essa tradução é oferecida para conveniência, mas é importante verificar se o modelo está seguindo as instruções na mensagem do sistema com o nível certo de confiança.
A resposta é a seguinte, em que você pode ver as estatísticas de uso do modelo:
Console.WriteLine($"Response: {response.Value.Choices[0].Message.Content}");
Console.WriteLine($"Model: {response.Value.Model}");
Console.WriteLine("Usage:");
Console.WriteLine($"\tPrompt tokens: {response.Value.Usage.PromptTokens}");
Console.WriteLine($"\tTotal tokens: {response.Value.Usage.TotalTokens}");
Console.WriteLine($"\tCompletion tokens: {response.Value.Usage.CompletionTokens}");
Response: As of now, it's estimated that there are about 7,000 languages spoken around the world. However, this number can vary as some languages become extinct and new ones develop. It's also important to note that the number of speakers can greatly vary between languages, with some having millions of speakers and others only a few hundred.
Model: mistralai-Mistral-7B-Instruct-v01
Usage:
Prompt tokens: 19
Total tokens: 91
Completion tokens: 72
Inspecione a seção usage
na resposta para conferir o número de tokens usados para a solicitação, o número total de tokens gerados e o número de tokens usados para a conclusão.
Como transmitir conteúdos
Por padrão, a API de conclusões retorna todo o conteúdo gerado em uma única resposta. Ao gerar conclusões longas, você pode precisar aguardar a resposta por muitos segundos.
É possível transmitir o conteúdo para recebê-lo à medida que ele é gerado. Ao transmitir o conteúdo, é possível começar a processar a conclusão à medida que ele se torna disponível. Esse modo retorna um objeto que transmite de volta a resposta na forma de eventos somente de dados enviados pelo servidor. Extraia partes do campo delta, em vez do campo de mensagem.
static async Task StreamMessageAsync(ChatCompletionsClient client)
{
ChatCompletionsOptions requestOptions = new ChatCompletionsOptions()
{
Messages = {
new ChatRequestSystemMessage("You are a helpful assistant."),
new ChatRequestUserMessage("How many languages are in the world? Write an essay about it.")
},
MaxTokens=4096
};
StreamingResponse<StreamingChatCompletionsUpdate> streamResponse = await client.CompleteStreamingAsync(requestOptions);
await PrintStream(streamResponse);
}
Para transmitir conclusões, use o método CompleteStreamingAsync
ao chamar o modelo. Observe que, neste exemplo, a chamada é encapsulada em um método assíncrono.
Para exibir a saída, defina um método assíncrono a fim de imprimir o fluxo no console.
static async Task PrintStream(StreamingResponse<StreamingChatCompletionsUpdate> response)
{
await foreach (StreamingChatCompletionsUpdate chatUpdate in response)
{
if (chatUpdate.Role.HasValue)
{
Console.Write($"{chatUpdate.Role.Value.ToString().ToUpperInvariant()}: ");
}
if (!string.IsNullOrEmpty(chatUpdate.ContentUpdate))
{
Console.Write(chatUpdate.ContentUpdate);
}
}
}
É possível observar como o streaming gera conteúdos:
StreamMessageAsync(client).GetAwaiter().GetResult();
Como explorar outros parâmetros com suporte do cliente de inferência
Confira outros parâmetros que podem ser especificados no cliente de inferência. Para obter uma lista completa de todos os parâmetros com suporte e da documentação correspondente, consulte a Referência da API de inferência de modelo da IA do Azure.
requestOptions = new ChatCompletionsOptions()
{
Messages = {
new ChatRequestSystemMessage("You are a helpful assistant."),
new ChatRequestUserMessage("How many languages are in the world?")
},
PresencePenalty = 0.1f,
FrequencyPenalty = 0.8f,
MaxTokens = 2048,
StopSequences = { "<|endoftext|>" },
Temperature = 0,
NucleusSamplingFactor = 1,
ResponseFormat = new ChatCompletionsResponseFormatText()
};
response = client.Complete(requestOptions);
Console.WriteLine($"Response: {response.Value.Choices[0].Message.Content}");
Aviso
Modelos da Mistral não dão suporte à formatação com saída JSON (response_format = { "type": "json_object" }
). Você sempre pode solicitar que o modelo gere saídas JSON. No entanto, não há garantia de que essas saídas estejam em formato JSON válido.
Para transmitir um parâmetro que não está na lista de parâmetros com suporte, faça a transmissão para o modelo subjacente usando parâmetros extras. Consulte Transmitir parâmetros extras ao modelo.
Como transmitir parâmetros extras ao modelo
A API de inferência de modelo da IA do Azure permite transmitir parâmetros extras ao modelo. O exemplo de código a seguir mostra como transmitir o parâmetro extra logprobs
ao modelo.
Antes de transmitir parâmetros extras à API de inferência de modelo da IA do Azure, verifique se o modelo dá suporte a esses parâmetros. Quando a solicitação é feita ao modelo subjacente, o cabeçalho extra-parameters
é transmitido a ele com o valor pass-through
. Esse valor indica que o ponto de extremidade deve transmitir os parâmetros extras ao modelo. O uso de parâmetros extras com o modelo não garante que ele possa realmente lidar com eles. Leia a documentação do modelo para entender quais parâmetros extras têm suporte.
requestOptions = new ChatCompletionsOptions()
{
Messages = {
new ChatRequestSystemMessage("You are a helpful assistant."),
new ChatRequestUserMessage("How many languages are in the world?")
},
AdditionalProperties = { { "logprobs", BinaryData.FromString("true") } },
};
response = client.Complete(requestOptions, extraParams: ExtraParameters.PassThrough);
Console.WriteLine($"Response: {response.Value.Choices[0].Message.Content}");
Os seguintes parâmetros extras podem ser passados para modelos de chat Mistral-7B e Mixtral:
Nome | Descrição | Type |
---|---|---|
logit_bias |
Aceita um objeto JSON que mapeia tokens (especificados por sua ID de token no tokenizer) para um valor de viés associado de -100 a 100. Matematicamente, o desvio é adicionado aos logits gerados pelo modelo antes da amostragem. O efeito exato varia de acordo com o modelo, mas os valores entre -1 e 1 deverão diminuir ou aumentar a probabilidade da seleção, os valores como -100 ou 100 deverão resultar em uma proibição ou seleção exclusiva do token relevante. | float |
logprobs |
Se você quer retornar as probabilidades de log dos tokens de saída ou não. Se for true, retornará as probabilidades de log de cada token de saída retornado no content da message . |
int |
top_logprobs |
Um inteiro entre 0 e 20 especificando o número de tokens mais prováveis a serem retornados em cada posição de token, cada um com uma probabilidade de log associada. logprobs precisa estar definido como true se esse parâmetro for usado. |
float |
n |
Quantas opções de preenchimento de chat serão geradas para cada mensagem de entrada. Observe que você será cobrado com base no número de tokens gerados em todas as opções. | int |
Modelos de chat Mistral-7B e Mixtral
Os modelos de chat Mistral-7B e Mixtral incluem os seguintes modelos:
O Modelo de Linguagem Grande (LLM) Mistral-7B-Instruct é uma versão instruída e ajustada do Mistral-7B, um modelo de transformador com as seguintes opções de arquitetura:
- Atenção de consulta agrupada
- Atenção de janela deslizante
- Token de BPE de fallback de byte
Os seguintes modelos estão disponíveis:
Dica
Além disso, o MistralAI dá suporte ao uso de uma API personalizada para uso com recursos específicos do modelo. Para usar a API específica do provedor de modelos, verifique a documentação do MistralAI ou veja a seção de exemplos de inferência para codificar exemplos.
Pré-requisitos
Para usar modelos de chat Mistral-7B e Mixtral com o Estúdio de IA do Azure, você precisa dos seguintes pré-requisitos:
Uma implantação de modelo
Implantação em uma computação gerenciada auto-hospedada
Os modelos de chat Mistral-7B e Mixtral podem ser implantados em nossa solução de inferência gerenciada auto-hospedada, que permite personalizar e controlar todos os detalhes sobre como o modelo é servido.
Para implantação em uma computação gerenciada auto-hospedada, você deve ter cota suficiente em sua assinatura. Se você não tiver cota suficiente disponível, poderá usar nosso acesso temporário de cota selecionando a opção Quero usar cota compartilhada e reconheço que esse ponto de extremidade será excluído em 168 horas.
Um cliente REST
Os modelos implantados com a API de inferência de modelo da IA do Azure podem ser consumidos com qualquer cliente REST. Para usar o cliente REST, você precisa atender a estes pré-requisitos:
- Para criar as solicitações, você precisa transmitir o URL do ponto de extremidade. O URL do ponto de extremidade tem o formulário
https://your-host-name.your-azure-region.inference.ai.azure.com
, em queyour-host-name`` is your unique model deployment host name and
your-azure-region é a região do Azure em que o modelo é implantado (por exemplo, eastus2). - Dependendo da sua preferência de autenticação e implantação de modelos, você precisará de uma chave para autenticação no serviço ou de credenciais do Microsoft Entra ID. A chave é uma cadeia de caracteres de 32 caracteres.
Como trabalhar com conclusões de chat
Nesta seção, você usa a API de inferência de modelo da IA do Azure com um modelo de conclusões para chat.
Dica
A API de inferência do modelo de IA do Azure permite que você converse com a maioria dos modelos implantados no Estúdio de IA do Azure com o mesmo código e estrutura, incluindo modelos de chat Mistral-7B e Mixtral.
Criar um cliente para consumir o modelo
Primeiro, crie o cliente para consumir o modelo. O código a seguir usa uma URL de ponto de extremidade e uma chave que são armazenadas em variáveis de ambiente.
Ao implantar o modelo em um ponto de extremidade online auto-hospedado com suporte ao Microsoft Entra ID, você pode usar o trecho de código a seguir para criar um cliente.
Obter os recursos do modelo
A rota /info
retorna informações sobre o modelo que é implantado no ponto de extremidade. Retorne as informações do modelo chamando o seguinte método:
GET /info HTTP/1.1
Host: <ENDPOINT_URI>
Authorization: Bearer <TOKEN>
Content-Type: application/json
A resposta é a seguinte:
{
"model_name": "mistralai-Mistral-7B-Instruct-v01",
"model_type": "chat-completions",
"model_provider_name": "MistralAI"
}
Como criar uma solicitação de conclusão de chat
O exemplo a seguir mostra como você pode criar uma solicitação básica de conclusões de chat para o modelo.
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "How many languages are in the world?"
}
]
}
Observação
mistralai-Mistral-7B-Instruct-v01, mistralai-Mistral-7B-Instruct-v02 e mistralai-Mixtral-8x22B-Instruct-v0-1 não dão suporte a mensagens do sistema (role="system"
). Quando você usa a API de inferência do modelo de IA do Azure, as mensagens do sistema são traduzidas para mensagens de usuário, que é a funcionalidade mais próxima disponível. Essa tradução é oferecida para conveniência, mas é importante verificar se o modelo está seguindo as instruções na mensagem do sistema com o nível certo de confiança.
A resposta é a seguinte, em que você pode ver as estatísticas de uso do modelo:
{
"id": "0a1234b5de6789f01gh2i345j6789klm",
"object": "chat.completion",
"created": 1718726686,
"model": "mistralai-Mistral-7B-Instruct-v01",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "As of now, it's estimated that there are about 7,000 languages spoken around the world. However, this number can vary as some languages become extinct and new ones develop. It's also important to note that the number of speakers can greatly vary between languages, with some having millions of speakers and others only a few hundred.",
"tool_calls": null
},
"finish_reason": "stop",
"logprobs": null
}
],
"usage": {
"prompt_tokens": 19,
"total_tokens": 91,
"completion_tokens": 72
}
}
Inspecione a seção usage
na resposta para conferir o número de tokens usados para a solicitação, o número total de tokens gerados e o número de tokens usados para a conclusão.
Como transmitir conteúdos
Por padrão, a API de conclusões retorna todo o conteúdo gerado em uma única resposta. Ao gerar conclusões longas, você pode precisar aguardar a resposta por muitos segundos.
É possível transmitir o conteúdo para recebê-lo à medida que ele é gerado. Ao transmitir o conteúdo, é possível começar a processar a conclusão à medida que ele se torna disponível. Esse modo retorna um objeto que transmite de volta a resposta na forma de eventos somente de dados enviados pelo servidor. Extraia partes do campo delta, em vez do campo de mensagem.
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "How many languages are in the world?"
}
],
"stream": true,
"temperature": 0,
"top_p": 1,
"max_tokens": 2048
}
É possível observar como o streaming gera conteúdos:
{
"id": "23b54589eba14564ad8a2e6978775a39",
"object": "chat.completion.chunk",
"created": 1718726371,
"model": "mistralai-Mistral-7B-Instruct-v01",
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"content": ""
},
"finish_reason": null,
"logprobs": null
}
]
}
A última mensagem no fluxo tem finish_reason
definido, o que indica o motivo da interrupção do processo de geração.
{
"id": "23b54589eba14564ad8a2e6978775a39",
"object": "chat.completion.chunk",
"created": 1718726371,
"model": "mistralai-Mistral-7B-Instruct-v01",
"choices": [
{
"index": 0,
"delta": {
"content": ""
},
"finish_reason": "stop",
"logprobs": null
}
],
"usage": {
"prompt_tokens": 19,
"total_tokens": 91,
"completion_tokens": 72
}
}
Como explorar outros parâmetros com suporte do cliente de inferência
Confira outros parâmetros que podem ser especificados no cliente de inferência. Para obter uma lista completa de todos os parâmetros com suporte e da documentação correspondente, consulte a Referência da API de inferência de modelo da IA do Azure.
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "How many languages are in the world?"
}
],
"presence_penalty": 0.1,
"frequency_penalty": 0.8,
"max_tokens": 2048,
"stop": ["<|endoftext|>"],
"temperature" :0,
"top_p": 1,
"response_format": { "type": "text" }
}
{
"id": "0a1234b5de6789f01gh2i345j6789klm",
"object": "chat.completion",
"created": 1718726686,
"model": "mistralai-Mistral-7B-Instruct-v01",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "As of now, it's estimated that there are about 7,000 languages spoken around the world. However, this number can vary as some languages become extinct and new ones develop. It's also important to note that the number of speakers can greatly vary between languages, with some having millions of speakers and others only a few hundred.",
"tool_calls": null
},
"finish_reason": "stop",
"logprobs": null
}
],
"usage": {
"prompt_tokens": 19,
"total_tokens": 91,
"completion_tokens": 72
}
}
Aviso
Modelos da Mistral não dão suporte à formatação com saída JSON (response_format = { "type": "json_object" }
). Você sempre pode solicitar que o modelo gere saídas JSON. No entanto, não há garantia de que essas saídas estejam em formato JSON válido.
Para transmitir um parâmetro que não está na lista de parâmetros com suporte, faça a transmissão para o modelo subjacente usando parâmetros extras. Consulte Transmitir parâmetros extras ao modelo.
Como transmitir parâmetros extras ao modelo
A API de inferência de modelo da IA do Azure permite transmitir parâmetros extras ao modelo. O exemplo de código a seguir mostra como transmitir o parâmetro extra logprobs
ao modelo.
Antes de transmitir parâmetros extras à API de inferência de modelo da IA do Azure, verifique se o modelo dá suporte a esses parâmetros. Quando a solicitação é feita ao modelo subjacente, o cabeçalho extra-parameters
é transmitido a ele com o valor pass-through
. Esse valor indica que o ponto de extremidade deve transmitir os parâmetros extras ao modelo. O uso de parâmetros extras com o modelo não garante que ele possa realmente lidar com eles. Leia a documentação do modelo para entender quais parâmetros extras têm suporte.
POST /chat/completions HTTP/1.1
Host: <ENDPOINT_URI>
Authorization: Bearer <TOKEN>
Content-Type: application/json
extra-parameters: pass-through
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "How many languages are in the world?"
}
],
"logprobs": true
}
Os seguintes parâmetros extras podem ser passados para modelos de chat Mistral-7B e Mixtral:
Nome | Descrição | Type |
---|---|---|
logit_bias |
Aceita um objeto JSON que mapeia tokens (especificados por sua ID de token no tokenizer) para um valor de viés associado de -100 a 100. Matematicamente, o desvio é adicionado aos logits gerados pelo modelo antes da amostragem. O efeito exato varia de acordo com o modelo, mas os valores entre -1 e 1 deverão diminuir ou aumentar a probabilidade da seleção, os valores como -100 ou 100 deverão resultar em uma proibição ou seleção exclusiva do token relevante. | float |
logprobs |
Se você quer retornar as probabilidades de log dos tokens de saída ou não. Se for true, retornará as probabilidades de log de cada token de saída retornado no content da message . |
int |
top_logprobs |
Um inteiro entre 0 e 20 especificando o número de tokens mais prováveis a serem retornados em cada posição de token, cada um com uma probabilidade de log associada. logprobs precisa estar definido como true se esse parâmetro for usado. |
float |
n |
Quantas opções de preenchimento de chat serão geradas para cada mensagem de entrada. Observe que você será cobrado com base no número de tokens gerados em todas as opções. | int |
Mais exemplos de inferência
Para mais exemplos de como usar modelos Mistral, veja os seguintes exemplos e tutoriais:
Descrição | Idioma | Amostra |
---|---|---|
Solicitação CURL | Bash | Link |
Pacote de inferência de IA do Azure para JavaScript | JavaScript | Link |
Pacote de inferência da IA do Azure para Python | Python | Link |
Solicitações da Web do Python | Python | Link |
SDK do OpenAI (experimental) | Python | Link |
LangChain | Python | Link |
Mistral AI | Python | Link |
LiteLLM | Python | Link |
Considerações de custo e cota para modelos Mistral implantados na computação gerenciada
Os modelos Mistral implantados na computação gerenciada são cobrados com base nas horas principais da instância de computação associada. O custo da instância de computação é determinado pelo tamanho da instância, pelo número de instâncias em execução e pela duração da execução.
É uma boa prática começar com um número baixo de instâncias e escalar verticalmente conforme necessário. Você pode monitorar o custo da instância de computação no portal do Azure.
Conteúdo relacionado
- API de Inferência do Modelo de IA do Azure
- Como implantar modelos como APIs sem servidor
- Como consumir pontos de extremidade de API sem servidor de um projeto ou hub diferente do Estúdio de IA do Azure
- Disponibilidade de região para modelos em pontos de extremidade de API sem servidor
- Como planejar e gerenciar custos (marketplace)