Compartilhar via


Migrando para a biblioteca de API de OpenAI do Python 1.x

O OpenAI lançou uma nova versão da biblioteca de API do Python OpenAI. Este guia é complementar ao guia de migração de OpenAI e ajudará você a se atualizar sobre as alterações específicas ao Azure OpenAI.

Atualizações

  • Esta é uma nova versão da biblioteca de API do OpenAI Python.
  • A partir de 6 de novembro de 2023, pip install openai e pip install openai --upgrade instalarão version 1.x da biblioteca OpenAI do Python.
  • Atualizar de version 0.28.1 para version 1.x é uma alteração interruptiva, então você precisará testar e atualizar seu código.
  • Tente novamente automaticamente com a retirada se houver um erro
  • Tipos adequados (para mypy/pyright/editores)
  • Agora você pode criar uma instância de um cliente, em vez de usar um padrão global.
  • Alternar para a instanciação explícita do cliente
  • Alterações de nome

Problemas conhecidos

Testar antes de migrar

Importante

Não há suporte para a migração automática do código usando openai migrate com o OpenAI do Azure.

Como esta é uma nova versão da biblioteca com alterações interruptivas, você deve testar seu código extensivamente em relação à nova versão antes de migrar os aplicativos de produção para depender da versão 1.x. Você também deve examinar seu código e processos internos para verificar se está seguindo as práticas recomendadas e fixando seu código de produção apenas em versões que você testou totalmente.

Para facilitar o processo de migração, estamos atualizando exemplos de código existentes em nossos documentos para Python para uma experiência com guias:

pip install openai --upgrade

Isso fornece contexto para o que foi alterado e permite que você teste a nova biblioteca em paralelo, continuando a fornecer suporte para a versão0.28.1. Se você atualizar para 1.x e perceber que precisa reverter temporariamente para a versão anterior, sempre poderá pip uninstall openai e reinstalar direcionado para 0.28.1 com pip install openai==0.28.1.

Preenchimentos de chat

Você precisa definir a variável model para o nome da implantação que você escolheu quando implantou os modelos do GPT-3.5-Turbo ou do GPT-4. Inserir o nome do modelo resulta em um erro, a menos que você escolha um nome de implantação que seja idêntico ao nome do modelo subjacente.

import os
from openai import AzureOpenAI

client = AzureOpenAI(
  azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"), 
  api_key=os.getenv("AZURE_OPENAI_API_KEY"),  
  api_version="2024-02-01"
)

response = client.chat.completions.create(
    model="gpt-35-turbo", # model = "deployment_name"
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Does Azure OpenAI support customer managed keys?"},
        {"role": "assistant", "content": "Yes, customer managed keys are supported by Azure OpenAI."},
        {"role": "user", "content": "Do other Azure AI services support this too?"}
    ]
)

print(response.choices[0].message.content)

Exemplos adicionais podem ser encontrados em nosso artigo detalhado sobre conclusão de chat.

Preenchimentos

import os
from openai import AzureOpenAI
    
client = AzureOpenAI(
    api_key=os.getenv("AZURE_OPENAI_API_KEY"),  
    api_version="2024-02-01",
    azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
)
    
deployment_name='REPLACE_WITH_YOUR_DEPLOYMENT_NAME' #This will correspond to the custom name you chose for your deployment when you deployed a model. 
    
# Send a completion call to generate an answer
print('Sending a test completion job')
start_phrase = 'Write a tagline for an ice cream shop. '
response = client.completions.create(model=deployment_name, prompt=start_phrase, max_tokens=10) # model = "deployment_name"
print(response.choices[0].text)

Incorporações

import os
from openai import AzureOpenAI

client = AzureOpenAI(
  api_key = os.getenv("AZURE_OPENAI_API_KEY"),  
  api_version = "2024-02-01",
  azure_endpoint =os.getenv("AZURE_OPENAI_ENDPOINT") 
)

response = client.embeddings.create(
    input = "Your text string goes here",
    model= "text-embedding-ada-002"  # model = "deployment_name".
)

print(response.model_dump_json(indent=2))

Exemplos adicionais, incluindo como lidar com a pesquisa semântica de texto sem embeddings_utils.py podem ser encontrados em nosso tutorial de inserções.

Async

O OpenAI não dá suporte à chamada de métodos assíncronos no cliente no nível do módulo, em vez disso, você deve criar uma instância de um cliente assíncrono.

import os
import asyncio
from openai import AsyncAzureOpenAI

async def main():
    client = AsyncAzureOpenAI(  
      api_key = os.getenv("AZURE_OPENAI_API_KEY"),  
      api_version = "2024-02-01",
      azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
    )
    response = await client.chat.completions.create(model="gpt-35-turbo", messages=[{"role": "user", "content": "Hello world"}]) # model = model deployment name

    print(response.model_dump_json(indent=2))

asyncio.run(main())

Autenticação

from azure.identity import DefaultAzureCredential, get_bearer_token_provider
from openai import AzureOpenAI

token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")

api_version = "2024-02-01"
endpoint = "https://my-resource.openai.azure.com"

client = AzureOpenAI(
    api_version=api_version,
    azure_endpoint=endpoint,
    azure_ad_token_provider=token_provider,
)

completion = client.chat.completions.create(
    model="deployment-name",  # model = "deployment_name"
    messages=[
        {
            "role": "user",
            "content": "How do I output all files in a directory using Python?",
        },
    ],
)
print(completion.model_dump_json(indent=2))

Usar seus dados

Para obter as etapas completas de configuração necessárias para que esses exemplos de código funcionem, consulte o uso do início rápido de seus dados.

import os
import openai
import dotenv

dotenv.load_dotenv()

endpoint = os.environ.get("AZURE_OPENAI_ENDPOINT")
api_key = os.environ.get("AZURE_OPENAI_API_KEY")
deployment = os.environ.get("AZURE_OPEN_AI_DEPLOYMENT_ID")

client = openai.AzureOpenAI(
    base_url=f"{endpoint}/openai/deployments/{deployment}/extensions",
    api_key=api_key,
    api_version="2023-08-01-preview",
)

completion = client.chat.completions.create(
    model=deployment, # model = "deployment_name"
    messages=[
        {
            "role": "user",
            "content": "How is Azure machine learning different than Azure OpenAI?",
        },
    ],
    extra_body={
        "dataSources": [
            {
                "type": "AzureCognitiveSearch",
                "parameters": {
                    "endpoint": os.environ["AZURE_AI_SEARCH_ENDPOINT"],
                    "key": os.environ["AZURE_AI_SEARCH_API_KEY"],
                    "indexName": os.environ["AZURE_AI_SEARCH_INDEX"]
                }
            }
        ]
    }
)

print(completion.model_dump_json(indent=2))

DALL-E fix

import time
import json
import httpx
import openai


class CustomHTTPTransport(httpx.HTTPTransport):
    def handle_request(
        self,
        request: httpx.Request,
    ) -> httpx.Response:
        if "images/generations" in request.url.path and request.url.params[
            "api-version"
        ] in [
            "2023-06-01-preview",
            "2023-07-01-preview",
            "2023-08-01-preview",
            "2023-09-01-preview",
            "2023-10-01-preview",
        ]:
            request.url = request.url.copy_with(path="/openai/images/generations:submit")
            response = super().handle_request(request)
            operation_location_url = response.headers["operation-location"]
            request.url = httpx.URL(operation_location_url)
            request.method = "GET"
            response = super().handle_request(request)
            response.read()

            timeout_secs: int = 120
            start_time = time.time()
            while response.json()["status"] not in ["succeeded", "failed"]:
                if time.time() - start_time > timeout_secs:
                    timeout = {"error": {"code": "Timeout", "message": "Operation polling timed out."}}
                    return httpx.Response(
                        status_code=400,
                        headers=response.headers,
                        content=json.dumps(timeout).encode("utf-8"),
                        request=request,
                    )

                time.sleep(int(response.headers.get("retry-after")) or 10)
                response = super().handle_request(request)
                response.read()

            if response.json()["status"] == "failed":
                error_data = response.json()
                return httpx.Response(
                    status_code=400,
                    headers=response.headers,
                    content=json.dumps(error_data).encode("utf-8"),
                    request=request,
                )

            result = response.json()["result"]
            return httpx.Response(
                status_code=200,
                headers=response.headers,
                content=json.dumps(result).encode("utf-8"),
                request=request,
            )
        return super().handle_request(request)


client = openai.AzureOpenAI(
    azure_endpoint="<azure_endpoint>",
    api_key="<api_key>",
    api_version="<api_version>",
    http_client=httpx.Client(
        transport=CustomHTTPTransport(),
    ),
)
image = client.images.generate(prompt="a cute baby seal")

print(image.data[0].url)

Alterações de nome

Observação

Todos os métodos a* foram removidos; em vez disso, o cliente assíncrono precisa ser usado.

OpenAI Python 0.28.1 OpenAI Python 1.x
openai.api_base openai.base_url
openai.proxy openai.proxies
openai.InvalidRequestError openai.BadRequestError
openai.Audio.transcribe() client.audio.transcriptions.create()
openai.Audio.translate() client.audio.translations.create()
openai.ChatCompletion.create() client.chat.completions.create()
openai.Completion.create() client.completions.create()
openai.Edit.create() client.edits.create()
openai.Embedding.create() client.embeddings.create()
openai.File.create() client.files.create()
openai.File.list() client.files.list()
openai.File.retrieve() client.files.retrieve()
openai.File.download() client.files.retrieve_content()
openai.FineTune.cancel() client.fine_tunes.cancel()
openai.FineTune.list() client.fine_tunes.list()
openai.FineTune.list_events() client.fine_tunes.list_events()
openai.FineTune.stream_events() client.fine_tunes.list_events(stream=True)
openai.FineTune.retrieve() client.fine_tunes.retrieve()
openai.FineTune.delete() client.fine_tunes.delete()
openai.FineTune.create() client.fine_tunes.create()
openai.FineTuningJob.create() client.fine_tuning.jobs.create()
openai.FineTuningJob.cancel() client.fine_tuning.jobs.cancel()
openai.FineTuningJob.delete() client.fine_tuning.jobs.create()
openai.FineTuningJob.retrieve() client.fine_tuning.jobs.retrieve()
openai.FineTuningJob.list() client.fine_tuning.jobs.list()
openai.FineTuningJob.list_events() client.fine_tuning.jobs.list_events()
openai.Image.create() client.images.generate()
openai.Image.create_variation() client.images.create_variation()
openai.Image.create_edit() client.images.edit()
openai.Model.list() client.models.list()
openai.Model.delete() client.models.delete()
openai.Model.retrieve() client.models.retrieve()
openai.Moderation.create() client.moderations.create()
openai.api_resources openai.resources

Removido

  • openai.api_key_path
  • openai.app_info
  • openai.debug
  • openai.log
  • openai.OpenAIError
  • openai.Audio.transcribe_raw()
  • openai.Audio.translate_raw()
  • openai.ErrorObject
  • openai.Customer
  • openai.api_version
  • openai.verify_ssl_certs
  • openai.api_type
  • openai.enable_telemetry
  • openai.ca_bundle_path
  • openai.requestssession (o OpenAI agora usa httpx)
  • openai.aiosession (o OpenAI agora usa httpx)
  • openai.Deployment (usado anteriormente para o OpenAI do Azure)
  • openai.Engine
  • openai.File.find_matching_files()