Udostępnij za pośrednictwem


Monitor.Enter Method (Object)

Microsoft Silverlight will reach end of support after October 2021. Learn more.

Acquires an exclusive lock on the specified object.

Namespace:  System.Threading
Assembly:  mscorlib (in mscorlib.dll)

Syntax

'Declaration
<SecuritySafeCriticalAttribute> _
Public Shared Sub Enter ( _
    obj As Object _
)
[SecuritySafeCriticalAttribute]
public static void Enter(
    Object obj
)

Parameters

  • obj
    Type: System.Object
    The object on which to acquire the monitor lock.

Exceptions

Exception Condition
ArgumentNullException

The obj parameter is nulla null reference (Nothing in Visual Basic).

Remarks

Use Enter to acquire the Monitor on the object passed as the parameter. If another thread has executed an Enter on the object, but has not yet executed the corresponding Exit, the current thread will block until the other thread releases the object. It is legal for the same thread to invoke Enter more than once without it blocking; however, an equal number of Exit calls must be invoked before other threads waiting on the object will unblock.

Use Monitor to lock objects (that is, reference types), not value types. When you pass a value type variable to Enter, it is boxed as an object. If you pass the same variable to Enter again, it is boxed as a separate object, and the thread does not block. The code that Monitor is supposedly protecting is not protected. Furthermore, when you pass the variable to Exit, still another separate object is created. Because the object passed to Exit is different from the object passed to Enter, Monitor throws SynchronizationLockException. For details, see the conceptual topic Monitors.

Use a C# try…finally block (Try…Finally in Visual Basic) to ensure that you release the monitor, or use the C# lock statement (SyncLock in Visual Basic), which wraps the Exit method in a try…finally block.

Examples

The following example demonstrates how to use the Enter, TryEnter, TryEnter, and Exit methods. The example defines a generic SafeQueue class that protects a private Queue<T> by using the methods of Monitor.

Important noteImportant Note:

When you acquire a lock, always use try/finally to ensure that the lock is released even if an exception is thrown. For example, the Dequeue method of this example throws an exception if the queue is empty. The method that acquires the lock must be outside the try block so that an exception in that method does not cause the finally block to execute. The C# lock and Visual Basic SyncLock statements are implemented using the Enter and Exit methods. We recommend that you use these statements instead of the Enter and Exit methods, because lock and SyncLock always use try/finally blocks to protect the Monitor.

The example creates a SafeQueue<int> (SafeQueue(Of Integer) in Visual Basic) and starts three threads that randomly queue and dequeue integers. When all three threads are finished, the example prints statistics for each operation.

Imports System.Threading
Imports System.Collections.Generic
Imports System.Text

Class SafeQueue(Of T)

   ' A queue that is protected by Monitor.
   Private m_inputQueue As New Queue(Of T)

   ' Lock the queue and add an element.
   Public Sub Enqueue(ByVal qValue As T)

      ' Request the lock, and block until it is obtained.
      Monitor.Enter(m_inputQueue)
      Try
         ' When the lock is obtained, add an element.
         m_inputQueue.Enqueue(qValue)

      Finally
         ' Ensure that the lock is released.
         Monitor.Exit(m_inputQueue)
      End Try
   End Sub

   ' Try to add an element to the queue: Add the element to the queue 
   ' only if the lock is immediately available.
   Public Function TryEnqueue(ByVal qValue As T) As Boolean

      ' Request the lock.
      If Monitor.TryEnter(m_inputQueue) Then
         Try
            m_inputQueue.Enqueue(qValue)

         Finally
            ' Ensure that the lock is released.
            Monitor.Exit(m_inputQueue)
         End Try
         Return True
      Else
         Return False
      End If
   End Function

   ' Try to add an element to the queue: Add the element to the queue 
   ' only if the lock becomes available during the specified time
   ' interval.
   Public Function TryEnqueue(ByVal qValue As T, ByVal waitTime As Integer) As Boolean

      ' Request the lock.
      If Monitor.TryEnter(m_inputQueue, waitTime) Then
         Try
            m_inputQueue.Enqueue(qValue)

         Finally
            ' Ensure that the lock is released.
            Monitor.Exit(m_inputQueue)
         End Try
         Return True
      Else
         Return False
      End If
   End Function

   ' Lock the queue and dequeue an element.
   Public Function Dequeue() As T

      Dim retval As T

      ' Request the lock, and block until it is obtained.
      Monitor.Enter(m_inputQueue)
      Try
         ' When the lock is obtained, dequeue an element.
         retval = m_inputQueue.Dequeue()

      Finally
         ' Ensure that the lock is released.
         Monitor.Exit(m_inputQueue)
      End Try

      Return retval
   End Function

   ' Delete all elements that equal the given object.
   Public Function Remove(ByVal qValue As T) As Integer

      Dim removedCt As Integer = 0

      ' Wait until the lock is available and lock the queue.
      Monitor.Enter(m_inputQueue)
      Try
         Dim counter As Integer = m_inputQueue.Count
         While (counter > 0)
            'Check each element.
            Dim elem As T = m_inputQueue.Dequeue()
            If Not elem.Equals(qValue) Then
               m_inputQueue.Enqueue(elem)
            Else
               ' Keep a count of items removed.
               removedCt += 1
            End If
            counter = counter - 1
         End While

      Finally
         ' Ensure that the lock is released.
         Monitor.Exit(m_inputQueue)
      End Try

      Return removedCt
   End Function

   ' Print all queue elements.
   Public Function PrintAllElements() As String

      Dim output As New StringBuilder()

      'Lock the queue.
      Monitor.Enter(m_inputQueue)
      Try
         For Each elem As T In m_inputQueue
            ' Print the next element.
            output.AppendLine(elem.ToString())
         Next

      Finally
         ' Ensure that the lock is released.
         Monitor.Exit(m_inputQueue)
      End Try

      Return output.ToString()
   End Function
End Class

Public Class Example

   Private Shared outputBlock As System.Windows.Controls.TextBlock
   Private Shared q As New SafeQueue(Of Integer)
   Private Shared threadsRunning As Integer = 0
   Private Shared results(2)() As Integer

   Public Shared Sub Demo(ByVal outputBlock As System.Windows.Controls.TextBlock)

      outputBlock.FontFamily = New FontFamily("Courier New")
      outputBlock.Text = "Working..." & vbLf
      Example.outputBlock = outputBlock

      For i As Integer = 0 To 2

         Dim t As New Thread(AddressOf ThreadProc)
         t.Start(i)
         Interlocked.Increment(threadsRunning)

      Next i

   End Sub

   Private Shared Sub ThreadProc(ByVal state As Object)

      Dim finish As DateTime = DateTime.Now.AddSeconds(10)
      Dim rand As New Random()
      Dim result() As Integer = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
      Dim threadNum As Integer = CInt(state)

      While (DateTime.Now < finish)

         Dim what As Integer = rand.Next(250)
         Dim how As Integer = rand.Next(100)

         If how < 16 Then
            q.Enqueue(what)
            result(ThreadResultIndex.EnqueueCt) += 1
         Else If how < 32 Then
            If q.TryEnqueue(what)
               result(ThreadResultIndex.TryEnqueueSucceedCt) += 1
            Else
               result(ThreadResultIndex.TryEnqueueFailCt) += 1
            End If
         Else If how < 48 Then
            ' Even a very small wait significantly increases the success 
            ' rate of the conditional enqueue operation.
            If q.TryEnqueue(what, 10)
               result(ThreadResultIndex.TryEnqueueWaitSucceedCt) += 1
            Else
               result(ThreadResultIndex.TryEnqueueWaitFailCt) += 1
            End If
         Else If how < 96 Then
            result(ThreadResultIndex.DequeueCt) += 1
            Try
               q.Dequeue()
            Catch
               result(ThreadResultIndex.DequeueExCt) += 1
            End Try
         Else
            result(ThreadResultIndex.RemoveCt) += 1
            result(ThreadResultIndex.RemovedCt) += q.Remove(what)
         End If

      End While

      results(threadNum) = result

      If 0 = Interlocked.Decrement(threadsRunning) Then

         Dim sb As New StringBuilder( _
            "                               Thread 1 Thread 2 Thread 3    Total" & vbLf)

         For row As Integer = 0 To 8

            Dim total As Integer = 0
            sb.Append(titles(row))

            For col As Integer = 0 To 2

               sb.Append(String.Format("{0,9}", results(col)(row)))
               total += results(col)(row)

            Next col

            sb.AppendLine(String.Format("{0,9}", total))

         Next row

         outputBlock.Dispatcher.BeginInvoke(displayHelper, sb.ToString())

      End If     

   End Sub

   Private Shared titles() As String = { _
      "Enqueue                       ", _
      "TryEnqueue succeeded          ", _
      "TryEnqueue failed             ", _
      "TryEnqueue(T, wait) succeeded ", _
      "TryEnqueue(T, wait) failed    ", _
      "Dequeue attempts              ", _
      "Dequeue exceptions            ", _
      "Remove operations             ", _
      "Queue elements removed        "  _
   }

   Private Enum ThreadResultIndex
      EnqueueCt
      TryEnqueueSucceedCt
      TryEnqueueFailCt
      TryEnqueueWaitSucceedCt
      TryEnqueueWaitFailCt
      DequeueCt
      DequeueExCt
      RemoveCt
      RemovedCt
   End Enum

   ' In order to update the TextBlock object, which is on the UI thread, you must
   ' make a cross-thread call by using the Dispatcher object that is associated 
   ' with the TextBlock. The DisplayOutput helper method and its delegate, 
   ' displayHelper, are used by the BeginInvoke method of the Dispatcher object
   ' to append text to the TextBlock. 
   '
   Private Shared displayHelper As New Action(Of String)(AddressOf DisplayOutput)
   Private Shared Sub DisplayOutput(ByVal msg As String)
      outputBlock.Text &= msg 
   End Sub

End Class

' This example produces output similar to the following:
'
'Working...
'                              Thread 1 Thread 2 Thread 3    Total
'Enqueue                          65947   108269    71071   245287
'TryEnqueue succeeded             66084   108631    71218   245933
'TryEnqueue failed                  105      168      130      403
'TryEnqueue(T, wait) succeeded    66658   108973    71695   247326
'TryEnqueue(T, wait) failed           2        2        1        5
'Dequeue attempts                199390   326435   214917   740742
'Dequeue exceptions                3508     5380     3929    12817
'Remove operations                16591    27104    17924    61619
'Queue elements removed            2921     4690     2982    10593
using System;
using System.Threading;
using System.Collections.Generic;
using System.Text;

class SafeQueue<T>
{
   // A queue that is protected by Monitor.
   private Queue<T> m_inputQueue = new Queue<T>();

   // Lock the queue and add an element.
   public void Enqueue(T qValue)
   {
      // Request the lock, and block until it is obtained.
      Monitor.Enter(m_inputQueue);
      try
      {
         // When the lock is obtained, add an element.
         m_inputQueue.Enqueue(qValue);
      }
      finally
      {
         // Ensure that the lock is released.
         Monitor.Exit(m_inputQueue);
      }
   }

   // Try to add an element to the queue: Add the element to the queue 
   // only if the lock is immediately available.
   public bool TryEnqueue(T qValue)
   {
      // Request the lock.
      if (Monitor.TryEnter(m_inputQueue))
      {
         try
         {
            m_inputQueue.Enqueue(qValue);
         }
         finally
         {
            // Ensure that the lock is released.
            Monitor.Exit(m_inputQueue);
         }
         return true;
      }
      else
      {
         return false;
      }
   }

   // Try to add an element to the queue: Add the element to the queue 
   // only if the lock becomes available during the specified time
   // interval.
   public bool TryEnqueue(T qValue, int waitTime)
   {
      // Request the lock.
      if (Monitor.TryEnter(m_inputQueue, waitTime))
      {
         try
         {
            m_inputQueue.Enqueue(qValue);
         }
         finally
         {
            // Ensure that the lock is released.
            Monitor.Exit(m_inputQueue);
         }
         return true;
      }
      else
      {
         return false;
      }
   }

   // Lock the queue and dequeue an element.
   public T Dequeue()
   {
      T retval;

      // Request the lock, and block until it is obtained.
      Monitor.Enter(m_inputQueue);
      try
      {
         // When the lock is obtained, dequeue an element.
         retval = m_inputQueue.Dequeue();
      }
      finally
      {
         // Ensure that the lock is released.
         Monitor.Exit(m_inputQueue);
      }

      return retval;
   }

   // Delete all elements that equal the given object.
   public int Remove(T qValue)
   {
      int removedCt = 0;

      // Wait until the lock is available and lock the queue.
      Monitor.Enter(m_inputQueue);
      try
      {
         int counter = m_inputQueue.Count;
         while (counter>0)
            //Check each element.
         {
            T elem = m_inputQueue.Dequeue();
            if (!elem.Equals(qValue))
            {
               m_inputQueue.Enqueue(elem);
            }
            else
            {
               // Keep a count of items removed.
               removedCt += 1;
            }
            counter = counter-1;
         }
      }
      finally
      {
         // Ensure that the lock is released.
         Monitor.Exit(m_inputQueue);
      }

      return removedCt;
   }

   // Print all queue elements.
   public string PrintAllElements()
   {
      StringBuilder output = new StringBuilder();

      //Lock the queue.
      Monitor.Enter(m_inputQueue);
      try
      {
         foreach( T elem in m_inputQueue )
         {
            // Print the next element.
            output.AppendLine(elem.ToString());
         }
      }
      finally
      {
         // Ensure that the lock is released.
         Monitor.Exit(m_inputQueue);
      }

      return output.ToString();
   }
}

public class Example
{
   private static System.Windows.Controls.TextBlock outputBlock;
   private static SafeQueue<int> q = new SafeQueue<int>();
   private static int threadsRunning = 0;
   private static int[][] results = new int[3][];

   public static void Demo(System.Windows.Controls.TextBlock outputBlock)
   {
      outputBlock.FontFamily = new System.Windows.Media.FontFamily("Courier New");
      outputBlock.Text = "Working...\n";
      Example.outputBlock = outputBlock;

      for(int i = 0; i < 3; i++)
      {
         Thread t = new Thread(ThreadProc);
         t.Start(i);
         Interlocked.Increment(ref threadsRunning);
      }
   }

   private static void ThreadProc(object state)
   {
      DateTime finish = DateTime.Now.AddSeconds(10);
      Random rand = new Random();
      int[] result = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
      int threadNum = (int) state;

      while (DateTime.Now < finish)

      {
         int what = rand.Next(250);
         int how = rand.Next(100);

         if (how < 16)
         {
            q.Enqueue(what);
            result[(int)ThreadResultIndex.EnqueueCt] += 1;
         }
         else if (how < 32)
         {
            if (q.TryEnqueue(what))
            {
               result[(int)ThreadResultIndex.TryEnqueueSucceedCt] += 1;
            }
            else
            {
               result[(int)ThreadResultIndex.TryEnqueueFailCt] += 1;
            }
         }
         else if (how < 48)
         {
            // Even a very small wait significantly increases the success 
            // rate of the conditional enqueue operation.
            if (q.TryEnqueue(what, 10))
            {
               result[(int)ThreadResultIndex.TryEnqueueWaitSucceedCt] += 1;
            }
            else
            {
               result[(int)ThreadResultIndex.TryEnqueueWaitFailCt] += 1;
            }
         }
         else if (how < 96)
         {
            result[(int)ThreadResultIndex.DequeueCt] += 1;
            try
            {
               q.Dequeue();
            }
            catch
            {
               result[(int)ThreadResultIndex.DequeueExCt] += 1;
            }
         }
         else
         {
            result[(int)ThreadResultIndex.RemoveCt] += 1;
            result[(int)ThreadResultIndex.RemovedCt] += q.Remove(what);
         }         
      }

      results[threadNum] = result;

      if (0 == Interlocked.Decrement(ref threadsRunning))      
      {
         StringBuilder sb = new StringBuilder(
            "                               Thread 1 Thread 2 Thread 3    Total\n");

         for(int row = 0; row < 9; row++)
         {
            int total = 0;
            sb.Append(titles[row]);

            for(int col = 0; col < 3; col++)
            {
               sb.Append(String.Format("{0,9}", results[col][row]));
               total += results[col][row];
            }

            sb.AppendLine(String.Format("{0,9}", total));
         }

         outputBlock.Dispatcher.BeginInvoke(displayHelper, sb.ToString());
      }
   }

   private static string[] titles = {
      "Enqueue                       ", 
      "TryEnqueue succeeded          ", 
      "TryEnqueue failed             ", 
      "TryEnqueue(T, wait) succeeded ", 
      "TryEnqueue(T, wait) failed    ", 
      "Dequeue attempts              ", 
      "Dequeue exceptions            ", 
      "Remove operations             ", 
      "Queue elements removed        "};

   private enum ThreadResultIndex
   {
      EnqueueCt, 
      TryEnqueueSucceedCt, 
      TryEnqueueFailCt, 
      TryEnqueueWaitSucceedCt, 
      TryEnqueueWaitFailCt, 
      DequeueCt, 
      DequeueExCt, 
      RemoveCt, 
      RemovedCt
   };

   // In order to update the TextBlock object, which is on the UI thread, you must
   // make a cross-thread call by using the Dispatcher object that is associated 
   // with the TextBlock. The DisplayOutput helper method and its delegate, 
   // displayHelper, are used by the BeginInvoke method of the Dispatcher object
   // to append text to the TextBlock. 
   //
   private static Action<string> displayHelper = new Action<string>(DisplayOutput);
   private static void DisplayOutput(string msg)
   {
      outputBlock.Text += msg;
   }
}

/* This example produces output similar to the following:

Working...
                              Thread 1 Thread 2 Thread 3    Total
Enqueue                          65947   108269    71071   245287
TryEnqueue succeeded             66084   108631    71218   245933
TryEnqueue failed                  105      168      130      403
TryEnqueue(T, wait) succeeded    66658   108973    71695   247326
TryEnqueue(T, wait) failed           2        2        1        5
Dequeue attempts                199390   326435   214917   740742
Dequeue exceptions                3508     5380     3929    12817
Remove operations                16591    27104    17924    61619
Queue elements removed            2921     4690     2982    10593
 */

Version Information

Silverlight

Supported in: 5, 4, 3

Silverlight for Windows Phone

Supported in: Windows Phone OS 7.1, Windows Phone OS 7.0

XNA Framework

Supported in: Xbox 360, Windows Phone OS 7.0

Platforms

For a list of the operating systems and browsers that are supported by Silverlight, see Supported Operating Systems and Browsers.