Udostępnij za pośrednictwem


PriorTrainer Klasa

Definicja

Element IEstimator<TTransformer> do przewidywania elementu docelowego przy użyciu modelu klasyfikacji binarnej.

public sealed class PriorTrainer : Microsoft.ML.IEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Trainers.PriorModelParameters>>, Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Trainers.PriorModelParameters>,Microsoft.ML.Trainers.PriorModelParameters>
type PriorTrainer = class
    interface ITrainerEstimator<BinaryPredictionTransformer<PriorModelParameters>, PriorModelParameters>
    interface IEstimator<BinaryPredictionTransformer<PriorModelParameters>>
Public NotInheritable Class PriorTrainer
Implements IEstimator(Of BinaryPredictionTransformer(Of PriorModelParameters)), ITrainerEstimator(Of BinaryPredictionTransformer(Of PriorModelParameters), PriorModelParameters)
Dziedziczenie
PriorTrainer
Implementuje

Uwagi

Aby utworzyć tego trenera, użyj opcji Przed

Kolumny wejściowe i wyjściowe

Dane kolumny etykiety wejściowej muszą mieć wartość Boolean. Dane wejściowe funkcji kolumny muszą być znanym wektorem o rozmiarze Single.

Ten trener generuje następujące kolumny:

Nazwa kolumny wyjściowej Typ kolumny Opis
Score Single Niezwiązany wynik, który został obliczony przez model.
PredictedLabel Boolean Przewidywana etykieta na podstawie znaku wyniku. Wynik ujemny mapuje na false wartości i wynik dodatni jest mapowy na true.
Probability Single Prawdopodobieństwo obliczone przez kalibrowanie wyniku wartości true jako etykiety. Wartość prawdopodobieństwa jest w zakresie [0, 1].

Cechy trenera

Zadanie uczenia maszynowego Klasyfikacja binarna
Czy normalizacja jest wymagana? Nie
Czy buforowanie jest wymagane? Nie
Wymagane narzędzie NuGet oprócz Microsoft.ML Brak
Eksportowanie do pliku ONNX Tak

Szczegóły algorytmu trenowania

Poznaje poprzedni rozkład etykiet klas 0/1 i danych wyjściowych.

Zapoznaj się z sekcją Zobacz również, aby uzyskać linki do przykładów użycia.

Właściwości

Info

Dodatkowe informacje o trenerze pod względem jego możliwości i wymagań.

Metody

Fit(IDataView)

Trenuje i zwraca wartość BinaryPredictionTransformer<TModel>.

GetOutputSchema(SchemaShape)

SchemaShape Zwraca schemat, który zostanie wygenerowany przez transformator. Służy do propagacji schematu i weryfikacji w potoku.

Metody rozszerzania

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Dołącz punkt kontrolny buforowania do łańcucha narzędzia do szacowania. Zapewni to, że narzędzia do szacowania podrzędnego zostaną wytrenowane względem buforowanych danych. Warto mieć punkt kontrolny buforowania, zanim trenerzy przejmą wiele danych.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Biorąc pod uwagę narzędzie do szacowania, zwróć obiekt opakowujący, który wywoła delegata po Fit(IDataView) wywołaniu. Często ważne jest, aby narzędzie do szacowania zwracało informacje o tym, co było odpowiednie, dlatego Fit(IDataView) metoda zwraca specjalnie wpisany obiekt, a nie tylko ogólną ITransformerwartość . Jednak w tym samym czasie IEstimator<TTransformer> często są tworzone w potoki z wieloma obiektami, więc może być konieczne utworzenie łańcucha narzędzi do szacowania za pośrednictwem EstimatorChain<TLastTransformer> miejsca, w którym narzędzie do szacowania, dla którego chcemy uzyskać transformator jest pochowany gdzieś w tym łańcuchu. W tym scenariuszu możemy za pomocą tej metody dołączyć delegata, który zostanie wywołany po wywołaniu dopasowania.

Dotyczy

Zobacz też