PriorTrainer Klasa
Definicja
Ważne
Niektóre informacje odnoszą się do produktu w wersji wstępnej, który może zostać znacząco zmodyfikowany przed wydaniem. Firma Microsoft nie udziela żadnych gwarancji, jawnych lub domniemanych, w odniesieniu do informacji podanych w tym miejscu.
Element IEstimator<TTransformer> do przewidywania elementu docelowego przy użyciu modelu klasyfikacji binarnej.
public sealed class PriorTrainer : Microsoft.ML.IEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Trainers.PriorModelParameters>>, Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Trainers.PriorModelParameters>,Microsoft.ML.Trainers.PriorModelParameters>
type PriorTrainer = class
interface ITrainerEstimator<BinaryPredictionTransformer<PriorModelParameters>, PriorModelParameters>
interface IEstimator<BinaryPredictionTransformer<PriorModelParameters>>
Public NotInheritable Class PriorTrainer
Implements IEstimator(Of BinaryPredictionTransformer(Of PriorModelParameters)), ITrainerEstimator(Of BinaryPredictionTransformer(Of PriorModelParameters), PriorModelParameters)
- Dziedziczenie
-
PriorTrainer
- Implementuje
Uwagi
Aby utworzyć tego trenera, użyj opcji Przed
Kolumny wejściowe i wyjściowe
Dane kolumny etykiety wejściowej muszą mieć wartość Boolean. Dane wejściowe funkcji kolumny muszą być znanym wektorem o rozmiarze Single.
Ten trener generuje następujące kolumny:
Nazwa kolumny wyjściowej | Typ kolumny | Opis | |
---|---|---|---|
Score |
Single | Niezwiązany wynik, który został obliczony przez model. | |
PredictedLabel |
Boolean | Przewidywana etykieta na podstawie znaku wyniku. Wynik ujemny mapuje na false wartości i wynik dodatni jest mapowy na true . |
|
Probability |
Single | Prawdopodobieństwo obliczone przez kalibrowanie wyniku wartości true jako etykiety. Wartość prawdopodobieństwa jest w zakresie [0, 1]. |
Cechy trenera
Zadanie uczenia maszynowego | Klasyfikacja binarna |
Czy normalizacja jest wymagana? | Nie |
Czy buforowanie jest wymagane? | Nie |
Wymagane narzędzie NuGet oprócz Microsoft.ML | Brak |
Eksportowanie do pliku ONNX | Tak |
Szczegóły algorytmu trenowania
Poznaje poprzedni rozkład etykiet klas 0/1 i danych wyjściowych.
Zapoznaj się z sekcją Zobacz również, aby uzyskać linki do przykładów użycia.
Właściwości
Info |
Dodatkowe informacje o trenerze pod względem jego możliwości i wymagań. |
Metody
Fit(IDataView) |
Trenuje i zwraca wartość BinaryPredictionTransformer<TModel>. |
GetOutputSchema(SchemaShape) |
SchemaShape Zwraca schemat, który zostanie wygenerowany przez transformator. Służy do propagacji schematu i weryfikacji w potoku. |
Metody rozszerzania
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Dołącz punkt kontrolny buforowania do łańcucha narzędzia do szacowania. Zapewni to, że narzędzia do szacowania podrzędnego zostaną wytrenowane względem buforowanych danych. Warto mieć punkt kontrolny buforowania, zanim trenerzy przejmą wiele danych. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Biorąc pod uwagę narzędzie do szacowania, zwróć obiekt opakowujący, który wywoła delegata po Fit(IDataView) wywołaniu. Często ważne jest, aby narzędzie do szacowania zwracało informacje o tym, co było odpowiednie, dlatego Fit(IDataView) metoda zwraca specjalnie wpisany obiekt, a nie tylko ogólną ITransformerwartość . Jednak w tym samym czasie IEstimator<TTransformer> często są tworzone w potoki z wieloma obiektami, więc może być konieczne utworzenie łańcucha narzędzi do szacowania za pośrednictwem EstimatorChain<TLastTransformer> miejsca, w którym narzędzie do szacowania, dla którego chcemy uzyskać transformator jest pochowany gdzieś w tym łańcuchu. W tym scenariuszu możemy za pomocą tej metody dołączyć delegata, który zostanie wywołany po wywołaniu dopasowania. |